知乎提问,如何证明技术是有效的?

曲线救国答一答。

——————————————————————————————

讲个不相关的东西,欧氏几何的五条公理。

第五条公理是这样的,过直线外一点,作且只可作一条直线与此平行。

根据第五条公理可以推出三角形内角和等于180。

那么欧氏的公理是真的还是假的?

谁来证明这五条公理的真假性?如果没法证明公理的真假性,由此公理而推导出的一系列定理那都是真假未知,要是都证明不了有效的,那还怎么可以使用。

————————————————————————————

鲍耶.雅诺,高斯,罗巴切夫斯基等一些数学家在19世纪早期试图证明欧氏的第五条公理。但均以失败告终,他们都发现第五公设是不可证明的。

俄国的罗巴切夫斯基胆子比较大,直接公开说明了这一情况,并将欧氏的第五条做了修改:

“过直线外一点,可以作无数条直线与此平行”。

由罗氏第五条可以推导出三角形内角和小于180。

其他四条和欧氏一摸一样。

——————————————————————————

高斯的徒弟黎曼在1851年发表的一篇论文中,提出另一种几何学

其中第五条为:“过直线外一点,一条平行线也作不出来”,由黎曼几何第五条可以推导出,三角形内角和大于180。其余四条和欧氏相同。

那么到底谁是正确的有效的?三个几何体系的第五条公理可是互相矛盾的,任何其中一个的第五条被证明是真的话,其他两个就都是假的了。

但事实上三个都是正确有效的。

——————————————————————————

三者的第五公理可以分别在,平面,双曲面,和曲面中得到证明。

欧氏几何在我们日常生活的地球上是非常适用的,在更微观的原子核世界罗氏几何更符合客观实际些,而在更宏观的球面上黎曼几何又更恰当。

——————————————————————————

你给我证明下技术分析三大假设的真假性,不好意思,我证明不出来,证明出来也没有屁用。

不是所有为真的事物,不可被证伪的事物都是有意义的,无法得到求证的也不意味着无效。

我告诉你再过一段时间,国内市场就会有趋势出现,这不废话么,但我这句话是真的你信不信,都不用证明,我这废话肯定有效,然而没有任何实战价值。

技术分析在符合背景情况的条件下去使用,就是合适的,他就能发挥相应的作用。反之在某些不符合的条件下,他就是不成立的,无效的。是否可证且为真,并不妨碍技术分析在实践中的应用。

——————————————————————

试图通过黎曼第五公理去反驳欧氏几何是不可能的,因为两者压根就不是在同一个环境当中,即使证明他的错误又能怎样,他们确实互相矛盾,但没有任何意义,我们所生活的世界并不是只有一套唯一的法则,它们没法求证不也一样广泛应用么。

我可以说,证明事物的真假性,和你能不能使用的好完全没有任何关系。在什么情况下使用,如何使用,才是真正关键的。

证明有效又怎样,世上不可证但为真的事物太多了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容