数轴
直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个。正因为它们的这个共性,所以用直线上无数个点来表示实数。这时就用一条规定了原点、正方向和单位长度的直线来表示实数。规定右边为正方向时,在这条直线上的两个数,右边上点表示的数总大于左边上点表示的数,正数大于零,零大于负数。
系数
系数定义:代数式的单项式中的数字因数叫做它的系数。
所以要理解什么是系数,必须先理解什么是单项式
单项式的定义:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式(例:0可看做0乘以a,1可以看做1乘以指数为0的字母,b可以看做b乘以1)
一些单项式的例子:2a、4b、6c、2(可看作2乘以某个字母的0次方)
注意,分母含有字母的式子不是单项式,比如:2/a,4/ab,6a/c
再看系数的定义:代数式的单项式中的数字因数叫做它的系数。所以就是字母前面的数字
比如上面的几个例子中,2a的系数就是a,4b的系数就是b
坐标
数学上坐标的实质是有序数对;
平面概念用来表示某个点的绝对位置;
延伸到游戏中用来表示游戏事物的平面位置;
地理学上定义的坐标,即地理坐标系(Geographic Coordinate System),是使用三维球面来定义地球表面位置,以实现通过经纬度对地球表面点位引用的坐标系。一个地理坐标系包括角度测量单位、本初子午线和参考椭球体三部分。
确定位置关系的数据值集合
天球上一点在此天球坐标系中的位置由两个球面坐标标定:①第一坐标或称经向坐标。作过该点和坐标系极点的大圆,称副圈,从主点到副圈与基圈交点的弧长为经向坐标。②第二坐标或称纬向坐标。从基圈上起沿副圈到该点的大圆弧长为纬向坐标。天球上任何一点的位置都可以由这两个坐标唯一地确定。这样的球面坐标系是正交坐标系。对于不同的基圈和主点,以及经向坐标所采用地不同量度方式,可以引出不同的天球坐标系,常用的有地平坐标系、赤道坐标系、黄道坐标系和银道坐标系。
三大坐标
笛卡尔坐标系(Cartesian coordinates)(法语:les coordonnées cartésiennes)就是直角坐标系和斜角坐标系的统称。
相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标 是根据数轴上 对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。
采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。
笛卡尔坐标系就是直角坐标系和斜角坐标系的统称。 相交于原点的两条数轴,构成了平面放射坐标系。[3] 如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。需要指出的是,请将数学中的 笛卡尔坐标系与电影《异次元杀阵》中的笛卡尔坐标相区分,电影中的定义与数学中定义有出入,请勿混淆。
笛卡尔坐标系
笛卡尔坐标系
2.柱坐标系中的三个坐标变量是r、φ、z。与空间直角坐标系相同,柱坐标系中也有一个z变量。其中r为原点O到点M在平面xoy上的投影M‘间的距离,r∈[0,+∞),
φ为从正z轴来看自x轴按逆时针方向转到OM'所转过的角,φ∈[0, 2π),
z为圆柱高度,z∈R
柱坐标系
柱坐标系
3.球坐标系(Spherical)-
假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数(r,θ,φ)来确定,其中r为原点O与点P间的距离;θ为有向线段OP与z轴正向的夹角;φ为从正z轴来看自x轴按逆时针方向转到OM所转过的角,这里M为点P在xOy面上的投影;。这样的三个数r,θ,φ叫做点P的球面坐标,显然,这里r,θ,φ的变化范围为r∈[0,+∞),θ∈[0, π], φ∈[0,2π] ,如下图所示。
当r,θ或φ分别为常数时,可以表示如下特殊曲面:r = 常数,即以原点为心的球面;θ= 常数,即以原点为顶点、z轴为轴的圆锥面;φ= 常数,即过z轴的半平面。