infercnv运行记录

sessionInfo()

> sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)

Matrix products: default

locale:
[1] LC_COLLATE=Chinese (Simplified)_China.936  LC_CTYPE=Chinese (Simplified)_China.936   
[3] LC_MONETARY=Chinese (Simplified)_China.936 LC_NUMERIC=C                              
[5] LC_TIME=Chinese (Simplified)_China.936    

attached base packages:
 [1] splines   parallel  stats4    stats     graphics  grDevices utils     datasets 
 [9] methods   base     

other attached packages:
 [1] monocle_2.18.0              DDRTree_0.1.5               irlba_2.3.3                
 [4] VGAM_1.1-5                  Matrix_1.2-18               patchwork_1.1.1            
 [7] celldex_1.0.0               SingleR_1.4.1               SummarizedExperiment_1.20.0
[10] Biobase_2.50.0              GenomicRanges_1.42.0        GenomeInfoDb_1.26.2        
[13] IRanges_2.24.1              S4Vectors_0.28.1            BiocGenerics_0.36.0        
[16] MatrixGenerics_1.2.0        matrixStats_0.57.0          forcats_0.5.0              
[19] stringr_1.4.0               dplyr_1.0.2                 purrr_0.3.4                
[22] readr_1.4.0                 tidyr_1.1.2                 tibble_3.0.4               
[25] ggplot2_3.3.3               tidyverse_1.3.0             Seurat_3.2.3               

loaded via a namespace (and not attached):
  [1] reticulate_1.18               tidyselect_1.1.0             
  [3] RSQLite_2.2.2                 AnnotationDbi_1.52.0         
  [5] htmlwidgets_1.5.3             docopt_0.7.1                 
  [7] grid_4.0.2                    combinat_0.0-8               
  [9] BiocParallel_1.24.1           Rtsne_0.15                   
 [11] munsell_0.5.0                 codetools_0.2-18             
 [13] ica_1.0-2                     future_1.21.0                
 [15] miniUI_0.1.1.1                withr_2.3.0                  
 [17] fastICA_1.2-2                 colorspace_2.0-0             
 [19] rstudioapi_0.13               ROCR_1.0-11                  
 [21] tensor_1.5                    listenv_0.8.0                
 [23] labeling_0.4.2                slam_0.1-48                  
 [25] GenomeInfoDbData_1.2.4        polyclip_1.10-0              
 [27] bit64_4.0.5                   farver_2.0.3                 
 [29] pheatmap_1.0.12               parallelly_1.23.0            
 [31] vctrs_0.3.6                   generics_0.1.0               
 [33] BiocFileCache_1.14.0          R6_2.5.0                     
 [35] rsvd_1.0.3                    bitops_1.0-6                 
 [37] spatstat.utils_1.20-2         DelayedArray_0.16.0          
 [39] assertthat_0.2.1              promises_1.1.1               
 [41] scales_1.1.1                  gtable_0.3.0                 
 [43] beachmat_2.6.4                globals_0.14.0               
 [45] goftest_1.2-2                 rlang_0.4.9                  
 [47] lazyeval_0.2.2                broom_0.7.3                  
 [49] BiocManager_1.30.10           yaml_2.2.1                   
 [51] reshape2_1.4.4                abind_1.4-5                  
 [53] modelr_0.1.8                  backports_1.2.0              
 [55] httpuv_1.5.4                  tools_4.0.2                  
 [57] ellipsis_0.3.1                RColorBrewer_1.1-2           
 [59] sessioninfo_1.1.1             ggridges_0.5.3               
 [61] Rcpp_1.0.5                    plyr_1.8.6                   
 [63] sparseMatrixStats_1.2.1       zlibbioc_1.36.0              
 [65] RCurl_1.98-1.2                densityClust_0.3             
 [67] rpart_4.1-15                  deldir_0.2-3                 
 [69] viridis_0.5.1                 pbapply_1.4-3                
 [71] cowplot_1.1.1                 zoo_1.8-8                    
 [73] haven_2.3.1                   ggrepel_0.9.0                
 [75] cluster_2.1.0                 fs_1.5.0                     
 [77] magrittr_2.0.1                RSpectra_0.16-0              
 [79] data.table_1.13.6             scattermore_0.7              
 [81] lmtest_0.9-38                 reprex_0.3.0                 
 [83] RANN_2.6.1                    fitdistrplus_1.1-3           
 [85] hms_0.5.3                     mime_0.9                     
 [87] xtable_1.8-4                  sparsesvd_0.2                
 [89] readxl_1.3.1                  gridExtra_2.3                
 [91] HSMMSingleCell_1.10.0         compiler_4.0.2               
 [93] KernSmooth_2.23-18            crayon_1.3.4                 
 [95] htmltools_0.5.1.1             mgcv_1.8-33                  
 [97] later_1.1.0.1                 lubridate_1.7.9.2            
 [99] DBI_1.1.0                     ExperimentHub_1.16.0         
[101] dbplyr_2.0.0                  MASS_7.3-53                  
[103] rappdirs_0.3.1                cli_2.2.0                    
[105] igraph_1.2.6                  pkgconfig_2.0.3              
[107] plotly_4.9.3                  xml2_1.3.2                   
[109] XVector_0.30.0                rvest_0.3.6                  
[111] digest_0.6.27                 sctransform_0.3.2            
[113] RcppAnnoy_0.0.18              spatstat.data_1.7-0          
[115] cellranger_1.1.0              leiden_0.3.6                 
[117] uwot_0.1.10                   DelayedMatrixStats_1.12.3    
[119] curl_4.3                      shiny_1.5.0                  
[121] lifecycle_0.2.0               nlme_3.1-151                 
[123] jsonlite_1.7.2                BiocNeighbors_1.8.2          
[125] viridisLite_0.3.0             limma_3.46.0                 
[127] fansi_0.4.1                   pillar_1.4.7                 
[129] lattice_0.20-41               fastmap_1.0.1                
[131] httr_1.4.2                    survival_3.2-7               
[133] interactiveDisplayBase_1.28.0 glue_1.4.2                   
[135] qlcMatrix_0.9.7               FNN_1.1.3                    
[137] spatstat_1.64-1               png_0.1-7                    
[139] BiocVersion_3.12.0            bit_4.0.4                    
[141] stringi_1.5.3                 blob_1.2.1                   
[143] BiocSingular_1.6.0            AnnotationHub_2.22.0         
[145] memoise_1.1.0                 future.apply_1.7.0    

代码1

> options(stringsAsFactors = F)
> library(Seurat)
> library(ggplot2)
> library(infercnv)
> expFile='expFile.txt'
> groupFiles='groupFiles.txt'
> geneFile='geneFile.txt'
> infercnv_obj = CreateInfercnvObject(raw_counts_matrix=expFile,
+                                     annotations_file=groupFiles,
+                                     delim="\t",
+                                     gene_order_file= geneFile,
+                                     ref_group_names=c('ref-endo' ,'ref-fib'))  ## 这个取决于自己的分组信息里面的

INFO [2021-03-10 14:55:24] Parsing matrix: expFile.txt
INFO [2021-03-10 14:56:39] Parsing gene order file: geneFile.txt
INFO [2021-03-10 14:56:39] Parsing cell annotations file: groupFiles.txt
INFO [2021-03-10 14:56:39] ::order_reduce:Start.
INFO [2021-03-10 14:56:40] .order_reduce(): expr and order match.
INFO [2021-03-10 14:56:40] ::process_data:order_reduce:Reduction from positional data, new dimensions (r,c) = 23449,6903 Total=9940369717 Min=0 Max=10408713.
INFO [2021-03-10 14:56:41] num genes removed taking into account provided gene ordering list: 1102 = 4.69956074885923% removed.
INFO [2021-03-10 14:56:41] -filtering out cells < 100 or > Inf, removing 0 % of cells
INFO [2021-03-10 14:56:46] validating infercnv_obj
> #  我自己的代码,运行超级耗费时间,不建议运行
> if(F){
+   infercnv_obj1 = infercnv::run(infercnv_obj,
+                               cutoff=1, 
+                               out_dir=  'plot_out/inferCNV_output_jimmy' ,
+                               cluster_by_groups=TRUE, 
+                               denoise=TRUE,#默认false
+                               HMM=TRUE)#默认false
+ }

代码2:

> infercnv_obj2 = infercnv::run(infercnv_obj,
+                              cutoff=1,  
+                              out_dir=  'plot_out/inferCNV_output2' , 
+                              cluster_by_groups=F,   # cluster
+                               hclust_method="ward.D2", plot_steps=F)
INFO [2021-03-10 14:57:35] ::process_data:Start
INFO [2021-03-10 14:57:35] Creating output path plot_out/inferCNV_output2
INFO [2021-03-10 14:57:35] Checking for saved results.
INFO [2021-03-10 14:57:35] 

    STEP 1: incoming data

INFO [2021-03-10 14:58:26] 

    STEP 02: Removing lowly expressed genes

INFO [2021-03-10 14:58:26] ::above_min_mean_expr_cutoff:Start
INFO [2021-03-10 14:58:26] Removing 7313 genes from matrix as below mean expr threshold: 1
INFO [2021-03-10 14:58:27] validating infercnv_obj
INFO [2021-03-10 14:58:27] There are 15034 genes and 6903 cells remaining in the expr matrix.
INFO [2021-03-10 14:58:34] no genes removed due to min cells/gene filter
INFO [2021-03-10 14:59:25] 

    STEP 03: normalization by sequencing depth

INFO [2021-03-10 14:59:25] normalizing counts matrix by depth
INFO [2021-03-10 14:59:35] Computed total sum normalization factor as median libsize: 956458.000000
INFO [2021-03-10 15:00:18] 

    STEP 04: log transformation of data

INFO [2021-03-10 15:00:18] transforming log2xplus1()
INFO [2021-03-10 15:01:04] 

    STEP 08: removing average of reference data (before smoothing)

INFO [2021-03-10 15:01:04] ::subtract_ref_expr_from_obs:Start inv_log=FALSE, use_bounds=TRUE
INFO [2021-03-10 15:01:04] subtracting mean(normal) per gene per cell across all data
INFO [2021-03-10 15:01:17] -subtracting expr per gene, use_bounds=TRUE
INFO [2021-03-10 15:02:30] 

    STEP 09: apply max centered expression threshold: 3

INFO [2021-03-10 15:02:30] ::process_data:setting max centered expr, threshold set to: +/-:  3
INFO [2021-03-10 15:03:43] 

    STEP 10: Smoothing data per cell by chromosome

INFO [2021-03-10 15:03:43] smooth_by_chromosome: chr: chr1
INFO [2021-03-10 15:03:54] smooth_by_chromosome: chr: chr10
INFO [2021-03-10 15:04:03] smooth_by_chromosome: chr: chr11
INFO [2021-03-10 15:04:14] smooth_by_chromosome: chr: chr12
INFO [2021-03-10 15:04:24] smooth_by_chromosome: chr: chr13
INFO [2021-03-10 15:04:31] smooth_by_chromosome: chr: chr14
INFO [2021-03-10 15:04:40] smooth_by_chromosome: chr: chr15
INFO [2021-03-10 15:04:48] smooth_by_chromosome: chr: chr16
INFO [2021-03-10 15:04:57] smooth_by_chromosome: chr: chr17
INFO [2021-03-10 15:05:07] smooth_by_chromosome: chr: chr18
INFO [2021-03-10 15:05:14] smooth_by_chromosome: chr: chr19
INFO [2021-03-10 15:05:25] smooth_by_chromosome: chr: chr2
INFO [2021-03-10 15:05:35] smooth_by_chromosome: chr: chr20
INFO [2021-03-10 15:05:44] smooth_by_chromosome: chr: chr21
INFO [2021-03-10 15:05:52] smooth_by_chromosome: chr: chr22
INFO [2021-03-10 15:06:00] smooth_by_chromosome: chr: chr3
INFO [2021-03-10 15:06:11] smooth_by_chromosome: chr: chr4
INFO [2021-03-10 15:06:20] smooth_by_chromosome: chr: chr5
INFO [2021-03-10 15:06:30] smooth_by_chromosome: chr: chr6
INFO [2021-03-10 15:06:39] smooth_by_chromosome: chr: chr7
INFO [2021-03-10 15:06:49] smooth_by_chromosome: chr: chr8
INFO [2021-03-10 15:06:58] smooth_by_chromosome: chr: chr9
INFO [2021-03-10 15:08:18] 

    STEP 11: re-centering data across chromosome after smoothing

INFO [2021-03-10 15:08:18] ::center_smooth across chromosomes per cell
INFO [2021-03-10 15:09:50] 

    STEP 12: removing average of reference data (after smoothing)

INFO [2021-03-10 15:09:50] ::subtract_ref_expr_from_obs:Start inv_log=FALSE, use_bounds=TRUE
INFO [2021-03-10 15:09:50] subtracting mean(normal) per gene per cell across all data
INFO [2021-03-10 15:10:06] -subtracting expr per gene, use_bounds=TRUE
INFO [2021-03-10 15:11:22] 

    STEP 14: invert log2(FC) to FC

INFO [2021-03-10 15:11:22] invert_log2(), computing 2^x
INFO [2021-03-10 15:12:43] 

    STEP 15: Clustering samples (not defining tumor subclusters)

INFO [2021-03-10 15:12:43] define_signif_tumor_subclusters(p_val=0.1
INFO [2021-03-10 15:12:43] define_signif_tumor_subclusters(), tumor: all_observations

这一步时间好长

STEP 15: Clustering samples (not defining tumor subclusters)

INFO [2021-03-10 15:12:43] define_signif_tumor_subclusters(p_val=0.1
INFO [2021-03-10 15:12:43] define_signif_tumor_subclusters(), tumor: all_observations
INFO [2021-03-10 19:22:47] cut tree into: 1 groups
INFO [2021-03-10 19:22:47] -processing all_observations,all_observations_s1
INFO [2021-03-10 19:22:47] define_signif_tumor_subclusters(), tumor: all_references
INFO [2021-03-10 19:27:23] cut tree into: 1 groups
INFO [2021-03-10 19:27:23] -processing all_references,all_references_s1
INFO [2021-03-10 19:29:41] ::plot_cnv:Start
INFO [2021-03-10 19:29:41] ::plot_cnv:Current data dimensions (r,c)=15034,6903 Total=104935060.812655 Min=0.274614818050265 Max=3.47381304931877.
INFO [2021-03-10 19:29:42] ::plot_cnv:Depending on the size of the matrix this may take a moment.
INFO [2021-03-10 19:34:05] plot_cnv(): auto thresholding at: (0.513715 , 1.508550)
INFO [2021-03-10 19:34:09] plot_cnv_observation:Start
INFO [2021-03-10 19:34:09] Observation data size: Cells= 5903 Genes= 15034
INFO [2021-03-10 19:34:11] plot_cnv_observation:Writing observations by grouping.
INFO [2021-03-10 19:38:24] plot_cnv_observation:Writing observation groupings/color.
INFO [2021-03-10 19:38:24] plot_cnv_observation:Done writing observation groupings/color.
INFO [2021-03-10 19:38:25] plot_cnv_observation:Writing observation heatmap thresholds.
INFO [2021-03-10 19:38:25] plot_cnv_observation:Done writing observation heatmap thresholds.
INFO [2021-03-10 19:38:52] Colors for breaks:  #00008B,#24249B,#4848AB,#6D6DBC,#9191CC,#B6B6DD,#DADAEE,#FFFFFF,#EEDADA,#DDB6B6,#CC9191,#BC6D6D,#AB4848,#9B2424,#8B0000
INFO [2021-03-10 19:38:52] Quantiles of plotted data range: 0.513715316376733,0.917554531504774,1,1.08606377720558,1.50855028644134
INFO [2021-03-10 19:39:12] plot_cnv_observations:Writing observation data to plot_out/inferCNV_output2/infercnv.preliminary.observations.txt
INFO [2021-03-10 19:43:31] plot_cnv_references:Start
INFO [2021-03-10 19:43:31] Reference data size: Cells= 1000 Genes= 15034
ERROR [2021-03-10 19:43:32] Unexpected error, should not happen.
Error in .plot_cnv_references(infercnv_obj = infercnv_obj, ref_data = ref_data_t,  : 
  Error
> 

耗时6小时 又失败了

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容

  • 在集成X5内核过程中,我遇到了很多问题。腾讯嘛,东西做的很好,但是官方文档写的是真的不行。不仅写的不清楚,而且可能...
    闪电代码手阅读 16,477评论 2 2
  • 1.HElib库简介 HElib是一个实现全同态加密的软件库,开发语言是C++,是根据Brakerski,Gent...
    不懂球的2大业阅读 3,537评论 6 4
  • 数据库基础知识 为什么要使用数据库 数据保存在内存 优点: 存取速度快 缺点: 数据不能永久保存 数据保存在文件 ...
    carter记录阅读 539评论 0 0
  • 六、结果分析 1、结果集中默认显示 2、Summary Report详解1) 概要整体信息 从上图可知:最大运行...
    nayli阅读 5,025评论 1 12
  • 今天感恩节哎,感谢一直在我身边的亲朋好友。感恩相遇!感恩不离不弃。 中午开了第一次的党会,身份的转变要...
    迷月闪星情阅读 10,549评论 0 11