学习笔记48 BI工具tableau复习(一) 4-12

tableau属于比较简单的可视化工具,但长时间不使用也会忘记一些操作,这里对tableau进行全方位复习。

一、认识 Tableau 数据

1.1 数据角色

Tableau 连接数据后会将数据显示在工作区的左侧,我们称之为数据窗口。数据源窗口的上方为维度窗口,下方为度量窗口,分别用来显示导入的维度字段和度量字段。维度和度量是 Tableau 的一种数据角色划分方式,离散和连续是另一种划分方式。

蓝色字段,绿色字段

tableau 在视图中以不同的方式表示数据,具体取决于字段是离散字段(蓝色)还是连续字段(绿色)。

==这个是字段类型,Abc就是文本型,#是数值

如果有些错了,可以在 Tableau 中,在“数据源”页面或工作表“数据”窗格页面中更改字段的数据类型。

1.4 字段简单处理

数据解释器可以帮助我们快速检测并绕过标题、注释、页脚、空单元格等内容,从而有效识别数据集中的实际字段和值。

如果数据中有包含多个信息单元的字符串字段(例如,客户的名字和姓氏),基于分析的需要,将该字段中的值拆分为多个单独的字段。这个时候我们就可以使用 Tableau 中的“拆分”或“自定义”拆分选项,基于分隔符或字段的每一行中存在的重复值模式来分隔值。一般可以通过在“数据源”页面或工作表“数据”窗格两种方式进行拆分。

转置(常用且重要的功能)

有时,在 Tableau 中分析以交叉表格式存储的数据可能很困难。在处理 Microsoft Excel、文本文件、和 .pdf 数据源时,可以对数据进行透视,从交叉表格式转换为分列格式。

例如,假设在四个单独的字段中有各大品牌手机的销量,这个时候我们就可以对数据进行透视,让手机品牌位于一个字段中,销量位于另一个字段中。

隐藏

有时,源数据字段过多,为了便于分析,我们可以暂时隐藏不需要的字段列。例如,在四个品牌手机中,我们只想单独分析苹果手机销量,这个时候我们就可以先把其他三个手机的字段隐藏掉。

二、支持导入的数据类型丰富多样

2.1 本地文件数据

2.1.1 Excel 文件

如果 该 Excel 文件只有一个 sheet 页,默认为该 sheet 页数据;

如果 该 Excel 文件只有多个 sheet 页,默认读取多个 sheet 页,并在数据源页面“工作表”区域显示。

2.1.2 文本文件( csv / txt )

Tableau 默认读取同一文件夹下所有文本文件。

例如,当我们连接《金庸武侠小说》文件夹下某一文本文件时,Tableau 会读取该文件夹下所有文本文件( csv / txt )。

2.2 服务器数据

Tableau 支持连接公司数据仓库,包含现在主流使用的 MySQL 和 Hadoop Hive ,需要我们首先下载并安装驱动程序,然后连接。

三、轻松实现数据融合

3.1 数据连接

有时为了得到完整的结果,我们需要从两个或更多的表中获取结果。这个时候就需要借助 Tableau的数据连接功能,基于这些表之间的共同字段,把来自两个或多个表的行结合起来。

Tableau 的数据联接功能类似 Excel 的 vlookup 函数、 MySQL 中的 join 函数、 Pandas 中的 merge函数。

3.2 数据合并

数据合并就是将值(行)从一个表附加到另一个表来合并两个或更多表。它用于数据结构完全一致的数据的合并,合并不会增加新的列,只是将不同文件的数据追加在一起,增加了行数。

比如,下面的订单数据按照地区分别存在三张表里:《东北地区》、《华北地区》、《华东地区》

通过对三张表创建并集,可以合并为一张表


3.3 数据混合关系

数据混合则保持了两个数据源的独立性,可以在每个视图上灵活修改。可以把数据混合理解为数据层面的跨库/表查询。

比如,在《示例 - 超市》表中,有“订单”和“退货”两个 sheet 页,在“订单”表我们可以查询每个类别产品的订单销量,如果我们想要增加退货单量,需要在“退货”表里增加退货字段,这个时候就可以对两张表编辑混合关系,建立一个临时查询视图。

第三章:初阶可视化,思路的简单流淌

一、图表的重要组成部分

1.1 行和列,思路开始实现

行和列添加方式:任意拖拽

度量指标默认聚合:

求和

平均值

中位数

计数

最大值

最小值

A. 字段标签:添加到行或列功能区的离散字段的标签,用于说明该字段的成员。例如,“类别”是一个离散字段,它包含以下三个成员:“家具”、“办公用品”和“技术”。

B. 标题:工作表、仪表板或故事提供的名称,系统会为工作表和故事自动显示标题。

C. 区/单元格:表示视图中所包括的字段(维度和度量)交集的数据。可以用线、条、形状、地图、文本等来表示标记。

D. 图例:描述视图中的数据编码方式的图例。例如,如果您在视图中使用形状或颜色,则图例会描述每个形状或颜色所代表的项。

E. 坐标轴:是在将度量(包含定量数值信息的字段)添加到视图时创建的。默认情况下,Tableau 会针对此数据生成连续的轴。

F. 横坐标字段名或标签:字段的成员名称。

G. 说明:描述视图中的数据的文本。说明可以自动生成,并且可以打开和关闭。

1.3 页面卡,制造画布分身

将一个字段拖放到页面卡会形成一个页面播放器,播放器可让工作表更灵活。

例如,当我们把“订单日期”字段拖到“页面卡”中,在视图区右边会自动出现一个“年(订单日期)”的播放器。单击播放器的播放键,可以让视图动态播放出来。

1.4 筛选器,有效过滤图表信息

有时候只想让 Tableau 展示数据的某一部分,比如只看2015年各类别销售额,这时可通过筛选器完成上述选择。

1.5 标记卡,施展视觉魔法棒

A. 颜色:依据维度和度量字段显示不同的标记颜色

B. 大小:依据维度和度量字段表达大小

C. 标签:将一个或多个字段标签显示在视图中

D. 详细信息:依据字段分解细化视图

E. 工具提示:鼠标悬停时显示工具提示中字段的信息

F. 形状:在视图中标记不同的形状,一个图只能有一个标记形状

二、常用图表必知必会

2.1 基本表

2.1.1 概念

基本表,又称作文本表、交叉表,即一般意义上的表格,它是一种最为直观的数据表现方式,在数据分析中具有不可忽视的作用

2.1.2 应用场景

可以代替冗长的文字叙述,便于计算、分析和对比

2.1.3 业务实例

在《示例 - 超市.xls》订单数据中,我们想要分析各个类别、子类别的销售额和例如数据,就可以创建一个基本表进行对比、分析,然后对类别、子类别按照销售额进行排序,就可以快速得到每个类别下排名TOP3的子类别:

家具TOP3:书架、椅子、桌子

技术TOP3:复印机、电话、设备

办公用品TOP3:器具、收纳具、装订机

2.2 条形图

2.2.1 概念

条形图,又称条状图、柱状图、柱形图,是最常使用的图表类型之一,它通过垂直或水平的条形展示维度字段的分布情况。

2.2.2 应用场景

最适宜比较不同类别的大小。

2.2.3 业务实例

在《示例 - 超市.xls》订单数据中,我们想要直观的对比各个子类别的销售额大小,就可以创建一个条形图,然后对子类别按照销售额进行排序,就可以非常直观的对比各个子类别销售额的大小,并且能够一目了然的得出TOP3销售的子类别

书架

器具

椅子

2.3 直方图

2.3.1 概念

直方图与条形图类似,主要区别在于条形图的横轴为单个类别,不用考虑纵轴上的度量值,用条形的长度表示各类别数量的多少;而直方图的横轴为对分析类别的分组( Tableau 中称为分桶),横轴宽度表示各组的组距,纵轴代表每级样本数量的多少。

2.3.2 应用场景

适用于对类别进行分组统计分析。分组的原因可能是因为类别是连续的,或者类别虽然离散但是数量过多,可以视为近似于连续,当然也可以基于某种业务需要。

2.3.3 业务实例

在《示例 - 超市.xls》订单数据中,我们想要分析每一笔订单销售额大小,但是销售额的数据小则两位数,大则上万,分散比较零散,因此,如果想要得到一个比较好的分析结果,需要对销售额的数据进行分组,根据销售额数据跨度,分成(0, 5000],(5000, 10000],(10000, 15000],(15000, 20000],(20000, 25000],(25000, 30000],(30000, 35000],35000以上,然后通过直方图进行展示,可以非常直观的得出以下结论:

随着销售额的增大,订单数量在不断减少

92%的订单销售额分布在(0, 5000]的区间

6%的订单销售额分布在(5000, 10000]的区间

2%的订单销售额分布在10000以上

①首先对销售额进行分桶

②用直方图展示每一组成交量

2.4 折线图

2.4.1 概念

一种以折线的上升或下降来表示统计数量的增减变化趋势的统计图。

2.4.2 应用场景

最适用于时间序列的数据。

2.4.3 业务实例

在《示例 - 超市.xls》订单数据中,我们想要分析2015 - 2018年近四年的销售额发展趋势,就可以构建以月为粒度的时间序列的折线图,通过该折线图,能够得出以下结论:

从总体上看,近3年销售额呈现不断上涨的趋势

从季度看,销售额呈现一定的时间序列规律,具体表现为:

每年从第一季度到第四季度销售额逐渐上升

第一季度为淡季,销售额最低

第四季度为旺季,销售额最高

2.5 饼图

2.5.1 概念

用圆形及圆内扇形的角度来表示数值大小的图形。

2.5.2 应用场景

最适合用来展示一个数据系列中各项值的大小与总和的比例。

2.5.3 业务实例

在《示例 - 超市.xls》订单数据中,我们想要对2015 - 2018年近四年的经营情况进行分析,其中一个很重要的维度就是分析不同渠道的盈亏情况,就可以构建饼图对消费者渠道、小型企业渠道以及公司渠道经营质量进行分析。通过该分析,得出以下结论:

总体看,盈利订单贡献了八成的销售额,非盈利订单贡献了两成销售额

小型企业渠道和消费者渠道盈利订单贡献销售额占比超平均水平,表现较好

公司渠道盈利订单贡献销售额占比低于平均水平,表现不好,需要优化

step1:创建计算字段“利润情况”

step2:把“利润情况”拖到列,“细分”拖到行,“销售额”拖到标签,在智能推荐区域选择“饼图”

step3:把“细分”从行拖到列

step4:在标记卡“总和(销售额)”快速表计算中选择“合计百分比”,计算依据选择“表向下”

step5:把“利润情况”和“总和(销售额)”拖到标记卡中的“标签”选项,然后在菜单栏“分析”下拉菜单选择“合计 - 显示行总和”

2.6 圆环图

同饼图

2.7 散点图

2.7.1 概念

用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联关系或总结坐标点的分布规律。

2.7.2 应用场景

用于有效分析不同变量之间的关系,显示能否通过某一变量准确预测另一变量,或者两个变量的变化是否彼此独立。

2.7.3 业务实例

在《示例 - 超市.xls》订单数据中,我们想要研究销售额和利润之间是否存在某种关系,可以将2015 -2018年近四年的销售额和利润构建散点图来观察两者之间的关系,并且借助分析功能中的辅助“趋势线”确定关系公式,通过观察该散点图,可以发现:

当利润大于0时,销售额和利润存在正线性关系,关系公式为:利润 = 0.23*销售额 + 17.43

当利润小于0时,销售额和利润存在负线性关系,关系公式为:利润 = -0.26*销售额 -104.56

2.8 气泡图

2.8.1 概念

通过每个气泡表示维度字段的一个取值,各个气泡的大小或颜色代表了度量值的大小。

2.8.2 应用场景

具有视觉吸引力,能够以非常直观的方式展示数据的大小。

2.8.3 业务实例

在《示例 - 超市.xls》订单数据中,我们想要直观的展示每个省份的销售额大小,就可以通过构建以省为维度的气泡图,气泡颜色越深、气泡越大,代表销售额越多。通过下方气泡图,我们能够一目了然的看出销售额排名前3的省份为:

山东

广东

黑龙江

2.9 树状图

2.9.1 概念

也称树形图,使用一组嵌套矩形来显示数据,也是一种突出显示异常数据点或重要数据的方法。

2.9.2 应用场景

适用于展示数据之间的层级和占比关系。

2.9.3 业务实例

在《示例 - 超市.xls》订单数据中,我们想要按照“地区 - 省份 - 城市”的层级将销售额进行下钻展示,就可以通过构建树状图直观展示,并且通过点击地区就可以直接下钻到省份,点击省份就可以下钻到城市。每个部分的矩形大小和颜色深浅代表销售额大小。矩形形状越大,颜色越深,代表销售额越多。通过观察该树状图,可以发现:

华东地区销售最大,中南地区次之,东北地区第三

对华东地区下钻,排名前三的省份为:山东、江苏、安徽

对山东省下钻,排名排名前三的城市为:……

2.10 靶心图

2.10.1 概念

通过在基本条形图上添加参考线和参考区间,帮助分析人员更加直观地了解两个度量之间的关系。

2.10.2 应用场景

适用于比较计划值和实际值,以此评估指标的表现,比如销售额目标达成率、KPI达成率等。

2.10.3 业务实例

在《3W咖啡销售数据.xlsx》和《3W门店目标额.xlsx》两个数据源中,我们想要看2019年全年的销售目标达成情况,就可以创建靶心图进行直观展示,靶心图中蓝色条代表实际的销售额,参考线代表销售额目标,通过靶心图,可以非常直观的看到:

公司2019年实现销售额3799589,销售目标5067969,目标达成率仅为75%

长城店、望京店、门头沟店、鲁谷店低于平均达成率,需重点关注

三、整合工作表,扔掉PPT

3.1 仪表板

仪表板是若干视图的集合,让我们能同时比较各种数据。例如,我们有一组每天都要审阅的数据,像收入的数据、业绩目标达成的数据、用户数据等,就可以创建一个一次性显示所有视图的仪表板(下图),将这些数据整合到一张仪表板上,而不是导航到单独的工作表。

3.1.1 仪表板功能简介

3.1.2 仪表板布局

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343