环境准备
服务器集群
我用的CentOS-6.6版本的4个虚拟机,主机名为hadoop01、hadoop02、hadoop03、hadoop04,另外我会使用hadoop用户搭建集群(生产环境中root用户不是可以任意使用的)spark安装包
下载地址:https://mirrors.aliyun.com/apache/spark/
我用的spark-2.2.0-bin-hadoop2.7.tgz
要根据自己机器中的hadoop版本选择对应的spark版本
1. 集群规划
1、安装Scala
下载路径:http://www.scala-lang.org/download/
拷贝文件到对应主机
(1)cp or SSH Secure File Transfer Client
(2)解压缩 tar -zvxf scala-2.12.2.tgz
(3)mv *** /opt/scala
(4)配置环境变量 /etc/profile
export SCALA_HOME=/home/hadoop3/scala-2.11.7
export PATH=$PATH:$SCALA_HOME/bin
(5)source /etc/profile
(6)验证 scala -version
2. 详细步骤
(1) 把安装包上传到hadoop01服务器并解压
[hadoop@hadoop01 soft]$ tar zxvf spark-2.2.0-bin-hadoop2.7.tgz -C /home/hadoop/apps/
# 解压后如果感觉安装目录的名称太长可以修改一下
[hadoop@hadoop01 soft]$ cd /home/hadoop/apps/
[hadoop@hadoop01 apps]$ mv spark-2.2.0-bin-hadoop2.7 spark-2.2.0
(2) 修改spark-env.sh配置文件
# 把SPARK_HOME/conf/下的spark-env.sh.template文件复制为spark-env.sh
[hadoop@hadoop01 apps]$ cd spark-2.2.0/conf
[hadoop@hadoop01 conf]$ mv spark-env.sh.template spark-env.sh
# 修改spark-env.sh配置文件,添加如下内容
[hadoop@hadoop01 conf]$ vim spark-env.sh
# 配置JAVA_HOME,一般来说,不配置也可以,但是可能会出现问题,还是配上吧
export JAVA_HOME=/usr/local/java/jdk1.8.0_73
# 一般来说,spark任务有很大可能性需要去HDFS上读取文件,所以配置上
# 如果说你的spark就读取本地文件,也不需要yarn管理,不用配
export HADOOP_CONF_DIR=/home/hadoop/apps/hadoop-2.7.4/etc/hadoop
# 设置Master的主机名
export SPARK_MASTER_HOST=hadoop01
# 提交Application的端口,默认就是这个,万一要改呢,改这里
export SPARK_MASTER_PORT=7077
# 每一个Worker最多可以使用的cpu core的个数,我虚拟机就一个...
# 真实服务器如果有32个,你可以设置为32个
export SPARK_WORKER_CORES=1
# 每一个Worker最多可以使用的内存,我的虚拟机就2g
# 真实服务器如果有128G,你可以设置为100G
export SPARK_WORKER_MEMORY=1g
(3) 修改slaves配置文件,添加Worker的主机列表
[hadoop@hadoop01 conf]$ mv slaves.template slaves
[hadoop@hadoop01 conf]$ vim slaves
# 里面的内容原来为localhost
hadoop01
hadoop02
hadoop03
hadoop04
(4) 把SPARK_HOME/sbin下的start-all.sh和stop-all.sh这两个文件重命名
比如分别把这两个文件重命名为start-spark-all.sh和stop-spark-all.sh
原因:
如果集群中也配置HADOOP_HOME,那么在HADOOP_HOME/sbin目录下也有start-all.sh和stop-all.sh这两个文件,当你执行这两个文件,系统不知道是操作hadoop集群还是spark集群。修改后就不会冲突了,当然,不修改的话,你需要进入它们的sbin目录下执行这些文件,这肯定就不会发生冲突了。我们配置SPARK_HOME主要也是为了执行其他spark命令方便。
[hadoop@hadoop01 conf]$ cd ../sbin
[hadoop@hadoop01 sbin]$ mv start-all.sh start-spark-all.sh
[hadoop@hadoop01 sbin]$ mv stop-all.sh stop-spark-all.sh
(5) 把spark安装包分发给其他节点
[hadoop@hadoop01 apps]$ scp -r spark-2.2.0 hadoop02:`pwd`
[hadoop@hadoop01 apps]$ scp -r spark-2.2.0 hadoop03:`pwd`
[hadoop@hadoop01 apps]$ scp -r spark-2.2.0 hadoop04:`pwd`
(6) 在集群所有节点中配置SPARK_HOME环境变量
[hadoop@hadoop01 conf]$ vim ~/.bash_profile
export SPARK_HOME=/home/hadoop/apps/spark-2.2.0
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin
[hadoop@hadoop01 conf]$ source ~/.bash_profile
# 其他节点也都配置...
(7) 在spark master节点启动spark集群
# 注意,如果你没有执行第4步,一定要进入SPARK_HOME/sbin目录下执行这个命令
# 或者你在Master节点分别执行start-master.sh和start-slaves.sh
[hadoop@hadoop01 conf]$ start-spark-all.sh
注意:
- 如果你配置了HADOOP_CONF_DIR,在启动spark集群之前,先启动hadoop集群
(8) 验证
spark完全分布式集群搭建成功!