前提
- 如果想要判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢(O(n),O(logn))。不过世界上还有一种叫作散列表(又叫哈希表),Hash table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit array)中的一个点。这样一来,我们只要看看这个点是不是1就可以知道集合中有没有它了。这就是布隆过滤器的基本思想。
作用
- 布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难
应用
- 网页URL的去重,垃圾邮件的判别,集合重复元素的判别,查询加速(比如基于key-value的存储系统)、数据库防止查询击穿, 使用BloomFilter来减少不存在的行或列的磁盘查找
布隆过滤器重要参数计算
-
假设输入对象个数为n,bitarray大小(也就是布隆过滤器大小)为m,所容忍的误判率p和哈希函数的个数k。计算公式如下:(小数向上取整)
- 由于我们计算的m和k可能是小数,那么需要经过向上取整,此时需要重新计算误判率p!
*可以结合redis的bitmap数据结构
算法题目
如果一个黑名单网站包含100亿个黑名单网页,每个网页最多占64B,设计一个系统,判断当前的URL是否在这个黑名单当中,要求额外空间不超过30GB,允许误差率为万分之一。