Author: Zongwei Zhou | 周纵苇
Weibo: @MrGiovanni
Email: zongweiz@asu.edu
References.
官方文档:multi_gpu_model
以及Google
0. 误区
目前Keras是支持了多个GPU同时训练网络,非常容易,但是靠以下这个代码是不行的。
os.environ["CUDA_VISIBLE_DEVICES"] = "1,2"
当你监视GPU的使用情况(nvidia-smi -l 1
)的时候会发现,尽管GPU不空闲,实质上只有一个GPU在跑,其他的就是闲置的占用状态,也就是说,如果你的电脑里面有多张显卡,无论有没有上面的代码,Keras都会默认的去占用所有能检测到的GPU。这行代码在你只需要一个GPU的时候时候用的,也就是可以让Keras检测不到电脑里其他的GPU。假设你一共有三张显卡,每个显卡都是有自己的标号的(0, 1, 2),为了不影响别人的使用,你只用其中一个,比如用gpu=1的这张,那么
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
然后再监视GPU的使用情况(nvidia-smi -l 1
),确实只有一个被占用,其他都是空闲状态。所以这是一个Keras使用多显卡的误区,它并不能同时利用多个GPU。
1. 目的
为什么要同时用多个GPU来训练?
单个显卡内存太小 -> batch size无法设的比较大,有时甚至batch_size=1都内存溢出(OUT OF MEMORY)
从我跑深度网络的经验来看,batch_size设的大一点会比较好,相当于每次反向传播更新权重,网络都可以看到更多的样本,从而不会每次iteration都过拟合到不同的地方去Don't Decay the Learning Rate, Increase the Batch Size。当然,我也看过有论文说也不能设的过大,原因不明... 反正我也没有机会试过。我建议的batch_size大概就是64~256的范围内,都没什么大问题。
但是随着现在网络的深度越来越深,对于GPU的内存要求也越来越大,很多入门的新人最大的问题往往不是代码,而是从Github里面抄下来的代码自己的GPU太渣,实现不了,只能降低batch_size,最后训练不出那种效果。
解决方案两个:一是买一个超级牛逼的GPU,内存巨大无比;二是买多个一般般的GPU,一起用。
第一个方案不行,因为目前即便最好的NVIDIA显卡,内存也不过十几个G了不起了,网络一深也挂,并且买一个牛逼显卡的性价比不高。所以、学会在Keras下用多个GPU是比较靠谱的选择。
2. 实现
2.1 设计一个类
cite: parallel_model.py
import tensorflow as tf
import keras.backend as K
import keras.layers as KL
import keras.models as KM
class ParallelModel(KM.Model):
"""Subclasses the standard Keras Model and adds multi-GPU support.
It works by creating a copy of the model on each GPU. Then it slices
the inputs and sends a slice to each copy of the model, and then
merges the outputs together and applies the loss on the combined
outputs.
"""
def __init__(self, keras_model, gpu_count):
"""Class constructor.
keras_model: The Keras model to parallelize
gpu_count: Number of GPUs. Must be > 1
"""
self.inner_model = keras_model
self.gpu_count = gpu_count
merged_outputs = self.make_parallel()
super(ParallelModel, self).__init__(inputs=self.inner_model.inputs,
outputs=merged_outputs)
def __getattribute__(self, attrname):
"""Redirect loading and saving methods to the inner model. That's where
the weights are stored."""
if 'load' in attrname or 'save' in attrname:
return getattr(self.inner_model, attrname)
return super(ParallelModel, self).__getattribute__(attrname)
def summary(self, *args, **kwargs):
"""Override summary() to display summaries of both, the wrapper
and inner models."""
super(ParallelModel, self).summary(*args, **kwargs)
self.inner_model.summary(*args, **kwargs)
def make_parallel(self):
"""Creates a new wrapper model that consists of multiple replicas of
the original model placed on different GPUs.
"""
# Slice inputs. Slice inputs on the CPU to avoid sending a copy
# of the full inputs to all GPUs. Saves on bandwidth and memory.
input_slices = {name: tf.split(x, self.gpu_count)
for name, x in zip(self.inner_model.input_names,
self.inner_model.inputs)}
output_names = self.inner_model.output_names
outputs_all = []
for i in range(len(self.inner_model.outputs)):
outputs_all.append([])
# Run the model call() on each GPU to place the ops there
for i in range(self.gpu_count):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i):
# Run a slice of inputs through this replica
zipped_inputs = zip(self.inner_model.input_names,
self.inner_model.inputs)
inputs = [
KL.Lambda(lambda s: input_slices[name][i],
output_shape=lambda s: (None,) + s[1:])(tensor)
for name, tensor in zipped_inputs]
# Create the model replica and get the outputs
outputs = self.inner_model(inputs)
if not isinstance(outputs, list):
outputs = [outputs]
# Save the outputs for merging back together later
for l, o in enumerate(outputs):
outputs_all[l].append(o)
# Merge outputs on CPU
with tf.device('/cpu:0'):
merged = []
for outputs, name in zip(outputs_all, output_names):
# If outputs are numbers without dimensions, add a batch dim.
def add_dim(tensor):
"""Add a dimension to tensors that don't have any."""
if K.int_shape(tensor) == ():
return KL.Lambda(lambda t: K.reshape(t, [1, 1]))(tensor)
return tensor
outputs = list(map(add_dim, outputs))
# Concatenate
merged.append(KL.Concatenate(axis=0, name=name)(outputs))
return merged
2.2 调用非常简洁
GPU_COUNT = 3 # 同时使用3个GPU
model = keras.applications.densenet.DenseNet201() # 比如使用DenseNet-201
model = ParallelModel(model, GPU_COUNT)
model.compile(optimizer=Adam(lr=1e-5), loss='binary_crossentropy', metrics = ['accuracy'])
model.fit(X_train, y_train,
batch_size=batch_size*GPU_COUNT,
epochs=nb_epoch, verbose=0, shuffle=True,
validation_data=(X_valid, y_valid))
model.save_weights('/path/to/save/model.h5')