用tf的VocabularyProcessor创建词汇表vocab

学习tf的时候用到的一个词汇创建工具,比较方便,记录其使用方法。


1. 导入


from tensorflow.contrib import learn

vp = learn.preprocessing.VocabularyProcessor(100, 0, tokenizer_fn=chinese_tokenizer)

其中VocabularyProcessor(max_document_length,min_frequency=0,vocabulary=None, tokenizer_fn=None)的构造函数中有4个参数

max_document_length是文档的最大长度。如果文本的长度大于最大长度,那么它会被剪切,反之则用0填充

min_frequency词频的最小值,出现次数>最小词频 的词才会被收录到词表中

vocabulary CategoricalVocabulary 对象,不太清楚使用方法
tokenizer_fn tokenizer function,讲句子或给定文本格式 token化得函数,可以理解为分词函数

2.token化

vp = learn.preprocessing.VocabularyProcessor(10, tokenizer_fn=list)
x = list(vp.fit_transform(["abc", "bbd"]))
print(x)

创建一个长为10的词表,然后将字符串token化得到结果为


也可以结合中文来做,当然tokenizer_fn要与文本相适应,可以实现自己的tokenizer function,如

from jieba import cut
from tensorflow.contrib import learn
import numpy as np

DOCUMENTS = [
    '这是一条测试1',
    '这是一条测试2',
    '这是一条测试3',
    '这是其他测试',
]


def chinese_tokenizer(docs):
    for doc in docs:
        yield list(cut(doc))


vocab = learn.preprocessing.VocabularyProcessor(10, 0, tokenizer_fn=chinese_tokenizer)
x = list(vocab.fit_transform(DOCUMENTS))
print(np.array(x))

这里中文引入了jieba分词,实现了自己的tokenizer函数,输出结果如下:


CategoricalVocabulary 对象可以先构建一个词典,再做token化,还是不太熟,但是有一个小demo可以示范:

vocab = learn.preprocessing.CategoricalVocabulary()
vocab.get("A")
vocab.get("B")
vocab.freeze()
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length=4,
                                                          vocabulary=vocab,
                                                          tokenizer_fn=list)
tokens = vocab_processor.fit_transform(["ABC", "CBABAF"])
print(np.array(list(tokens)))

这里预先创建了一个词典,添加了"A","B" 进去,并且设置最大文本长度为4,结果如下


我们可以还可以观察得到的词典,以dict的形式输出 这是一个 词--->词表id的映射

vocab_dict = vocab.vocabulary_._mapping
print(vocab_dict)

分别输出以上的中文词表,和通过CategoricalVocabulary构建的词表如下


反向的索引 即 词表id--->词的映射 这是一个列表

print(vocab_dict)
print(vocab.vocabulary_._reverse_mapping)

可以通过id索引到词

vocab.vocabulary_.reverse(3)

输出 在词表中id为3的词

3.存储和加载

vocab.save('vocab.pickle')
vocab = VocabularyProcessor.restore('vocab.pickle')
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容