002.如何应对高并发

特别说明: 本人平时混迹于 B 站,不咋回复这里的评论,有问题可以到 B 站视频评论区留言找我
视频地址: https://space.bilibili.com/31137138/favlist?fid=326428938
课件说明: 本次提供的课件是 Spring Cloud Netflix 版微服务架构指南,如果有兴趣想要学习 Spring Cloud Alibaba 版,可以前往 http://www.qfdmy.com 查看相关课程资源
案例代码: https://github.com/topsale/hello-spring-cloud-netflix

什么是高并发

高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。高并发相关常用的一些指标有 响应时间(Response Time)吞吐量(Throughput)每秒查询率 QPS(Query Per Second)并发用户数 等。

  • 响应时间: 系统对请求做出响应的时间。例如系统处理一个 HTTP 请求需要 200ms,这个 200ms 就是系统的响应时间。
  • 吞吐量: 单位时间(年,月,日,时,分,秒)内处理的请求数量。
  • QPS: 每秒响应请求数。在互联网领域,这个指标和吞吐量区分的没有这么明显。
  • 并发用户数: 同时承载正常使用系统功能的用户数量。例如一个即时通讯系统,同时在线量一定程度上代表了系统的并发用户数。

如何提升系统的并发能力

互联网分布式架构设计,提高系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up)水平扩展(Scale Out)

垂直扩展

提升单机处理能力。垂直扩展的方式又有两种:

  • 增强单机硬件性能,例如:增加 CPU 核数如 32 核,升级更好的网卡如万兆,升级更好的硬盘如 SSD,扩充硬盘容量如 2T,扩充系统内存如 128G;
  • 提升单机架构性能,例如:使用 Cache 来减少 IO 次数,使用异步来增加单服务吞吐量,使用无锁数据结构来减少响应时间;

在互联网业务发展非常迅猛的早期,如果预算不是问题,强烈建议使用 “增强单机硬件性能” 的方式提升系统并发能力,因为这个阶段,公司的战略往往是发展业务抢时间,而 “增强单机硬件性能” 往往是最快的方法。

不管是提升单机硬件性能,还是提升单机架构性能,都有一个致命的不足:单机性能总是有极限的。所以互联网分布式架构设计高并发终极解决方案还是水平扩展。

水平扩展

只要增加服务器数量,就能线性扩充系统性能。水平扩展对系统架构设计是有要求的,如何在架构各层进行可水平扩展的设计,以及互联网公司架构各层常见的水平扩展实践,是本文重点讨论的内容。

典型互联网分层架构

如何应对高并发1.png
  • 客户端层: 典型调用方是浏览器或手机应用 APP
  • 反向代理层: 系统入口(Ingress),反向代理(Nginx)
  • 站点应用层: 实现核心应用逻辑,返回 HTML 或者 JSON
  • 服务层: 微服务体现在这一层
  • 数据缓存层: 缓存加速访问存储
  • 数据库层: 数据库持久化数据存储

水平扩展分层架构

反向代理层的水平扩展

如何应对高并发2.png

反向代理层的水平扩展,是通过 DNS 轮询 实现的:DNS Server 对于一个域名配置了多个解析 IP,每次 DNS 解析请求来访问 DNS Server,会轮询返回这些 IP。

当 Nginx 成为瓶颈的时候,只要增加服务器数量,新增 Nginx 服务的部署,增加一个外网 IP,就能扩展反向代理层的性能,做到理论上的无限高并发。

站点应用层的水平扩展

如何应对高并发3.png

站点层的水平扩展,是通过 Nginx 实现的。通过修改 nginx.conf,可以设置多个 Web 后端。

当 Web 后端成为瓶颈的时候,只要增加服务器数量,新增 Web 服务的部署,在 Nginx 配置中配置上新的 Web 后端,就能扩展站点层的性能,做到理论上的无限高并发。

服务层的水平扩展

如何应对高并发4.png

服务层的水平扩展,是通过 服务连接池 实现的。

站点层通过 RPC Client 调用下游的服务层 RPC Server 时,RPC Client 中的连接池会建立与下游服务多个连接,当服务成为瓶颈的时候,只要增加服务器数量,新增服务部署,在 RPC Client 处建立新的下游服务连接,就能扩展服务层性能,做到理论上的无限高并发。如果需要优雅的进行服务层自动扩容,这里可能需要配置中心里服务自动发现功能的支持。

数据层的水平扩展

在数据量很大的情况下,数据层(缓存,数据库)涉及数据的水平扩展,将原本存储在一台服务器上的数据(缓存,数据库)水平拆分到不同服务器上去,以达到扩充系统性能的目的。

按照范围水平拆分

如何应对高并发5.png

每一个数据服务,存储一定范围的数据

  • user0 库,存储 uid 范围 1-1kw
  • user1 库,存储 uid 范围 1kw-2kw

优点:

  • 规则简单,Service 只需判断一下 uid 范围就能路由到对应的存储服务
  • 数据均衡性较好
  • 比较容易扩展,可以随时加一个 uid [2kw,3kw] 的数据服务

缺点:

  • 请求的负载不一定均衡,一般来说,新注册的用户会比老用户更活跃,大范围的服务请求压力会更大

按照哈希水平拆分

如何应对高并发6.png

每一个数据库,存储某个 key 值 hash 后的部分数据

  • user0 库,存储偶数 uid 数据
  • user1 库,存储奇数 uid 数据

优点:

  • 规则简单,Service 只需对 uid 进行 hash 能路由到对应的存储服务
  • 数据均衡性较好
  • 请求均匀性较好

缺点:

  • 不容易扩展,扩展一个数据服务,hash 方法改变时候,可能需要进行数据迁移

水平拆分与主从同步

这里需要注意的是,通过水平拆分来扩充系统性能,与主从同步读写分离来扩充数据库性能的方式有本质的不同。

通过水平拆分扩展数据库性能

  • 每个服务器上存储的数据量是总量的 1/n,所以单机的性能也会有提升
  • n 个服务器上的数据没有交集,那个服务器上数据的并集是数据的全集
  • 数据水平拆分到了 n 个服务器上,理论上读性能扩充了 n 倍,写性能也扩充了 n 倍(其实远不止 n 倍,因为单机的数据量变为了原来的 1/n)

通过主从同步读写分离扩展数据库性能

  • 每个服务器上存储的数据量是和总量相同
  • n 个服务器上的数据都一样,都是全集
  • 理论上读性能扩充了 n 倍,写仍然是单点,写性能不变

注意: 缓存层的水平拆分和数据库层的水平拆分类似,也是以范围拆分和哈希拆分的方式居多

总结

高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。

提高系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up)与水平扩展(Scale Out)。前者垂直扩展可以通过提升单机硬件性能,或者提升单机架构性能,来提高并发性,但单机性能总是有极限的,互联网分布式架构设计高并发终极解决方案还是后者:水平扩展

互联网分层架构中,各层次水平扩展的实践又有所不同:

  • 反向代理层可以通过 DNS 轮询 的方式来进行水平扩展
  • 站点层可以通过 Nginx 来进行水平扩展
  • 服务层可以通过服务连接池来进行水平扩展
  • 数据库可以按照数据范围,或者数据哈希的方式来进行水平扩展

各层实施水平扩展后,能够通过增加服务器数量的方式来提升系统的性能,做到理论上的性能无限。

特别说明: 本人平时混迹于 B 站,不咋回复这里的评论,有问题可以到 B 站视频评论区留言找我
视频地址: https://space.bilibili.com/31137138/favlist?fid=326428938
课件说明: 本次提供的课件是 Spring Cloud Netflix 版微服务架构指南,如果有兴趣想要学习 Spring Cloud Alibaba 版,可以前往 http://www.qfdmy.com 查看相关课程资源
案例代码: https://github.com/topsale/hello-spring-cloud-netflix

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容