Day-6 骆栢维

R包

安装加载R包

> options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
> 
> options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 
> 
> install.packages("dplyr")
WARNING: Rtools is required to build R packages but is not currently installed. Please download and install the appropriate version of Rtools before proceeding:

https://cran.rstudio.com/bin/windows/Rtools/
trying URL 'https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/windows/contrib/3.6/dplyr_0.8.3.zip'
Content type 'application/zip' length 3266767 bytes (3.1 MB)
downloaded 3.1 MB

package ‘dplyr’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in
    C:\Users\luobo\AppData\Local\Temp\RtmpMJbEb9\downloaded_packages
> library(dplyr)

载入程辑包:‘dplyr’

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union

Warning message:
程辑包‘dplyr’是用R版本3.6.1 来建造的 
> 
> library(dplyr)#载入R包,便于后面函数使用

dplyr五个基本函数

新增列mutate()

> mutate(test, new = Sepal.Length * Sepal.Width)
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          5.1         3.5          1.4         0.2     setosa
2          4.9         3.0          1.4         0.2     setosa
3          7.0         3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor
5          6.3         3.3          6.0         2.5  virginica
6          5.8         2.7          5.1         1.9  virginica
    new
1 17.85
2 14.70
3 22.40
4 20.48
5 20.79
6 15.66

按列筛选

按列号

> select(test,c(2,4))
    Sepal.Width Petal.Width
1           3.5         0.2
2           3.0         0.2
51          3.2         1.4
52          3.2         1.5
101         3.3         2.5
102         2.7         1.9

按名

> select(test,Petal.Length)
    Petal.Length
1            1.4
2            1.4
51           4.7
52           4.5
101          6.0
102          5.1

筛选行

> filter(test, Species == "setosa"&Sepal.Length < 5 )
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          4.9           3          1.4         0.2  setosa

排序

> arrange(test, Sepal.Width)# 默认升序
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          5.8         2.7          5.1         1.9  virginica
2          4.9         3.0          1.4         0.2     setosa
3          7.0         3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor
5          6.3         3.3          6.0         2.5  virginica
6          5.1         3.5          1.4         0.2     setosa
> arrange(test, desc(Sepal.Width))# 降序
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          5.1         3.5          1.4         0.2     setosa
2          6.3         3.3          6.0         2.5  virginica
3          7.0         3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor
5          4.9         3.0          1.4         0.2     setosa
6          5.8         2.7          5.1         1.9  virginica

汇总

> group_by(test,Species)
# A tibble: 6 x 5
# Groups:   Species [3]
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species   
*        <dbl>       <dbl>        <dbl>       <dbl> <fct>     
1          5.1         3.5          1.4         0.2 setosa    
2          4.9         3            1.4         0.2 setosa    
3          7           3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor
5          6.3         3.3          6           2.5 virginica 
6          5.8         2.7          5.1         1.9 virginica 
> summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
  Species    `mean(Sepal.Length)` `sd(Sepal.Length)`#mean代表平均数,sd表示标准差
  <fct>                     <dbl>              <dbl>
1 setosa                     5                 0.141
2 versicolor                 6.7               0.424
3 virginica                  6.05              0.354

dplyr实用技能

通道操作 %>%

count统计

dplyr处理关系数据

内连取交集inner_join

左连left_join

全连full_join

半连semi_join

反连anti_join

合并bind_rows()bind_cols

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容