Chapter 4

Chapter 4: Dynamic Programming

Dynamic programming computes optimal policies given a perfect model of the environment as an MDP.

Policy Iteration

  1. Policy evaluation: compute the value function of a given policy in an iterative way as v_{k+1}(s) = \sum_a \pi(a | s) \sum_{s', r} p(s', r | s, a) \big [ r + \gamma v_k(s') \big ]. The existence and uniqueness of v_\pi are guaranteed as long as either \gamma < 1 or eventual termination is guaranteed from all states under the policy \pi. And the sequence \{ v_k \} converges to v_\pi as k \rightarrow \infty under the same condition.
    This kind of value updates are called expected updates because they are based on an expectation over all possible next states rather than a sample next state.
    The value updates can both be computed in-place, which can utilizes the new state values as soon as possible. Convergence is also guaranteed for in-place update, and the order in which states have their values updated during the sweep has a significant influence on the rate of converge.
  2. Policy improvement: improve the policy by making it greedy w.r.t. the value function of the original policy. The policy improvement theorem guarantees that this must give us a strictly better policy except when the original policy is already optimal.

Policy iteration works in an interaction loop of policy evaluation and policy improvement.
More generally, generalized policy iteration (GPI) focuses on the general idea of interaction between policy evaluation and policy improvement, which compete and cooperate with each other to reach the optimum.

Variants with Approximations for Acceleration

  1. Value iteration: update the value function as v_{k+1}(s) = \max_a \sum_{s', r} p(s', r | s, a) \big [ r + \gamma v_k(s') \big ], which can be seen as a truncated version of policy evaluation with k = 1.
    It can also be seen as directly solving the nonlinear Bellman optimality equation with iterative method.
  2. Asynchronous DP: only update the value of some states instead of the whole state set.
    Convergence is guanranteed only if it continues to update the values of all the states, so it does not guarantee less computation.
    But it provides more flexiblity and good ways to incorporate domain knowledge. First, we can try to order the updates to let value information propogate from state to state in an efficient way. Second, we might try to skip updating some states entirely if they are not relevant to optimal behavior. Third, we can use real-time interaction trajectory to specify the state update choice, which helps the DP algorithm to focus on the state subset most relevant to the agent.

Efficiency of DP

Given an MDP with n states and k actions, direct search requires k^n steps to exhaustively examine all possible policies. A DP method is guaranteed to find an optimal policy in polynomial time.
I think the efficiency improvement is mainly brought by utlizing the system dynamics, which helps model the structure of the state set.
DP can be seen as a model-based method. So even if we choose a deterministic policy, we can still "imagine" how choosing other actions will behave without explicit exploration.

Approximations in DP

  1. Policy evaluation may have noise, and is dependent on the value estimation of successor states (bootstrapping)
  2. Even if the policy evaluation is accurate, the policy is improved based on the value function of the original policy
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343