【文章导读】目前人脸识别技术已经遍地开花,火车站、机场、会议签到等等领域都有应用,人脸识别的过程中有个重要的环节叫做人脸检测,顾名思义就是在一张图片中找出所有的人脸的位置,早期的人脸检测是用人工提取特征的方式,训练分类器,比如opencv中自带的人脸检测器使用了haar特征,早期的这种算法自然是鲁棒性、抗干扰性太差,本文主要来介绍近几年的几种用卷积神经网络做的经典算法。
1、Compact Cascade CNN
论文链接:https://arxiv.org/abs/1508.01292
github链接:https://github.com/Bkmz21/FD-Evaluation
论文特点:识别人脸速度快!!!网络参数少,所以贼快。
这是一篇2015年的来自俄罗斯托木斯克理工大学的论文,针对快速人脸检测任务。
该算法核心网络结构:
为了快,该网络结构参数少,分为三个stage, 依次有797, 1,819 和 2,923 个参数,使用的是TanH激活,因为网络太小ReLU不好使。而且为了速度,作者使用了近似函数来逼近TanH。
使用近似函数来逼近TanH:
该算法流程图:
首先是输入一张灰度图片,构成图像金字塔。然后通过stage1(CNN1)后会产生候选单元。
NMS(非极大值抑制)算法是从多个定位框中合并一些框,如图:
然后候选单元进入stage2和stage3(CNN2和CNN3),通过以下公式判断是否是人脸(CNN2和CNN3的输出结果进入decision rule)。
实验结果(详细数据请参考原文):
总结:
这是一种轻量级的快速人脸检测算法,也就是说在计算资源较小的情况下也能实现,并且快。缺点当然就是没有特别准。
2、MTCNN(多任务级联卷积神经网络用于人脸检测与对准 )
代码链接:
https://github.com/kpzhang93/MTCNN_face_detection_alignment
这是2016年中国科学院深圳先进技术研究院的文章,同样用于人脸检测任务,跟上文所述Compact Cascade CNN类似,该算法网络也采用了三个级联的网络,接下来看看具体的流程。
MTCNN算法流程:
首先,给定图像,我们首先将其调整到不同的比例,以构建图像金字塔,这是三级网络框架的输入。
Stage 1:使用的P-Net是一个全卷积网络,通过浅层的CNN用来生成候选窗极其边框回归向量。使用Bounding box regression的方法来校正这些候选窗,使用非极大值抑制(NMS)合并重叠的候选框。
Stage 2:使用N-Net改善候选窗。将通过P-Net的候选窗输入R-Net中,拒绝掉大部分false的窗口,继续使用Bounding box regression和NMS合并。
Stage 3:最后使用O-Net输出最终的人脸框和特征点位置。和第二步类似,但是不同的是生成5个特征点位置。
网络结构介绍:
pytorch实现网络结构代码(需要注意,略有不同的是,代码中的P-Net和R-Net没有输出网络结构中的Facial landmark localization):
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import numpy as np
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
"""
Arguments:
x: a float tensor with shape [batch_size, c, h, w].
Returns:
a float tensor with shape [batch_size, c*h*w].
"""
# without this pretrained model isn't working
x = x.transpose(3, 2).contiguous()
return x.view(x.size(0), -1)
class PNet(nn.Module):
def __init__(self):
super(PNet, self).__init__()
# suppose we have input with size HxW, then
# after first layer: H - 2,
# after pool: ceil((H - 2)/2),
# after second conv: ceil((H - 2)/2) - 2,
# after last conv: ceil((H - 2)/2) - 4,
# and the same for W
self.features = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(3, 10, 3, 1)),
('prelu1', nn.PReLU(10)),
('pool1', nn.MaxPool2d(2, 2, ceil_mode=True)),
('conv2', nn.Conv2d(10, 16, 3, 1)),
('prelu2', nn.PReLU(16)),
('conv3', nn.Conv2d(16, 32, 3, 1)),
('prelu3', nn.PReLU(32))
]))
self.conv4_1 = nn.Conv2d(32, 2, 1, 1)
self.conv4_2 = nn.Conv2d(32, 4, 1, 1)
#net = self()
weights = np.load('src/weights/pnet.npy')[()]
for n, p in self.named_parameters():
#pass
p.data = torch.FloatTensor(weights[n])
def forward(self, x):
"""
Arguments:
x: a float tensor with shape [batch_size, 3, h, w].
Returns:
b: a float tensor with shape [batch_size, 4, h', w'].
a: a float tensor with shape [batch_size, 2, h', w'].
"""
x = self.features(x)
a = self.conv4_1(x)
b = self.conv4_2(x)
a = F.softmax(a)
return b, a
class RNet(nn.Module):
def __init__(self):
super(RNet, self).__init__()
self.features = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(3, 28, 3, 1)),
('prelu1', nn.PReLU(28)),
('pool1', nn.MaxPool2d(3, 2, ceil_mode=True)),
('conv2', nn.Conv2d(28, 48, 3, 1)),
('prelu2', nn.PReLU(48)),
('pool2', nn.MaxPool2d(3, 2, ceil_mode=True)),
('conv3', nn.Conv2d(48, 64, 2, 1)),
('prelu3', nn.PReLU(64)),
('flatten', Flatten()),
('conv4', nn.Linear(576, 128)),
('prelu4', nn.PReLU(128))
]))
self.conv5_1 = nn.Linear(128, 2)
self.conv5_2 = nn.Linear(128, 4)
weights = np.load('src/weights/rnet.npy')[()]
for n, p in self.named_parameters():
p.data = torch.FloatTensor(weights[n])
def forward(self, x):
"""
Arguments:
x: a float tensor with shape [batch_size, 3, h, w].
Returns:
b: a float tensor with shape [batch_size, 4].
a: a float tensor with shape [batch_size, 2].
"""
x = self.features(x)
a = self.conv5_1(x)
b = self.conv5_2(x)
a = F.softmax(a)
return b, a
class ONet(nn.Module):
def __init__(self):
super(ONet, self).__init__()
self.features = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(3, 32, 3, 1)),
('prelu1', nn.PReLU(32)),
('pool1', nn.MaxPool2d(3, 2, ceil_mode=True)),
('conv2', nn.Conv2d(32, 64, 3, 1)),
('prelu2', nn.PReLU(64)),
('pool2', nn.MaxPool2d(3, 2, ceil_mode=True)),
('conv3', nn.Conv2d(64, 64, 3, 1)),
('prelu3', nn.PReLU(64)),
('pool3', nn.MaxPool2d(2, 2, ceil_mode=True)),
('conv4', nn.Conv2d(64, 128, 2, 1)),
('prelu4', nn.PReLU(128)),
('flatten', Flatten()),
('conv5', nn.Linear(1152, 256)),
('drop5', nn.Dropout(0.25)),
('prelu5', nn.PReLU(256)),
]))
self.conv6_1 = nn.Linear(256, 2)
self.conv6_2 = nn.Linear(256, 4)
self.conv6_3 = nn.Linear(256, 10)
weights = np.load('src/weights/onet.npy')[()]
for n, p in self.named_parameters():
p.data = torch.FloatTensor(weights[n])
def forward(self, x):
"""
Arguments:
x: a float tensor with shape [batch_size, 3, h, w].
Returns:
c: a float tensor with shape [batch_size, 10].
b: a float tensor with shape [batch_size, 4].
a: a float tensor with shape [batch_size, 2].
"""
x = self.features(x)
a = self.conv6_1(x)
b = self.conv6_2(x)
c = self.conv6_3(x)
a = F.softmax(a)
return c, b, a
模型训练阶段:
人脸检测
这就是一个分类任务,使用交叉熵损失函数:
边框回归使用平方和损失函数:
人脸特征点定位也使用平方和损失函数:
我们在整个CNN框架上有多种不同的任务,不是每一种任务都需要执行以上三种损失函数的,比如判断背景图片是不是人脸的时候,只需要计算det的损失函数(第一个损失函数),α表示任务的重要性,所以定义如下函数:
实验结果(详细分析请参考论文原文):
用上边pytorch的代码跑了一下(测试了一张只有一个人脸的图片):
输出了一些O-Net的face classification、bounding box regression和Facial landmark localization,输出依旧是5 * 2、5 * 4、5 * 10的Variable(至于为什么都是5,待我搞清楚再更新...),如下图:
结论:
同时提高了人脸检测的速度和精度。
参考文献:
1、https://blog.csdn.net/tinyzhao/article/details/53236191
2、https://blog.csdn.net/tinyzhao/article/details/53236191
3、https://www.zhihu.com/question/28748001