时间复杂度,空间复杂度

因为执行时间很难评估,所以时间复杂度本质就是代码执行的次数

对于时间复杂度,我一直搞不清楚是什么回事,或者说处于最简单的计算方式上:

常数阶O(1), 对数阶O(log2n), 线性阶O(n), 线性对数阶O(nlog2n), 平方阶O(n^2), 立方阶O(n^3),..., k次方阶O(n^k), 指数阶O(2^n) 。

其中,

1.O(n),O(n^2), 立方阶O(n^3),..., k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。

2.O(2^n),指数阶时间复杂度,该种不实用

3.对数阶O(log2n),  线性对数阶O(nlog2n),除了常数阶以外,该种效率最高

例:算法:

  for(i=1;i<=n;++i)

  {

    for(j=1;j<=n;++j)

    {

        c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2

          for(k=1;k<=n;++k)

              c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3

    }

  }

  则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级

  则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c

  则该算法的 时间复杂度:T(n) = O(n^3)

定义:

如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

几种时间复杂度的举例:

O(1)

Temp=i;i=j;j=temp;

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2)交换i和j的内容

sum=0;                 (一次)

for(i=1;i<=n;i++)       (n次 )

for(j=1;j<=n;j++) (n^2次 )

sum++;       (n^2次 )

解:T(n)=2n^2+n+1 =O(n^2)

for (i=1;i

{

y=y+1;         ①

for (j=0;j<=(2*n);j++)

x++;        ②

}

解: 语句1的频度是n-1

语句2的频度是(n-1)*(2n+1)=2n^2-n-1

f(n)=2n^2-n-1+(n-1)=2n^2-2

该程序的时间复杂度T(n)=O(n^2).

O(n)     

a=0;

b=1;                      ①

for (i=1;i<=n;i++) ②

{

s=a+b;    ③

b=a;     ④

a=s;     ⑤

}

解:语句1的频度:2,

语句2的频度: n,

语句3的频度: n-1,

语句4的频度:n-1,

语句5的频度:n-1,

T(n)=2+n+3(n-1)=4n-1=O(n).

O(log2n )

i=1;       ①

while (i<=n)

i=i*2; ②

解: 语句1的频度是1,

设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n

取最大值f(n)= log2n,

T(n)=O(log2n )

O(n^3)

for(i=0;i

{

for(j=0;j

{

for(k=0;k

x=x+2;

}

}

解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6

所以时间复杂度为O(n^3).

下面是一些常用的记法:

访问数组中的元素是常数时间操作,或说O(1)操作。

一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。

用strcmp比较两个具有n个字符的串需要O(n)时间。

常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对元素相乘并加到一起,所有元素的个数是n^2。

指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。

空间复杂度:

for(int i=0;i<n;++){

int temp = i;

}

int temp=0;

for(int i=0;i<n;i++){

temp = i;

}

空间复杂度分别人n和1

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容