Pytorch学习记录-torchtext和Pytorch的实例1
0. PyTorch Seq2Seq项目介绍
1. 使用神经网络训练Seq2Seq
1.1 简介,对论文中公式的解读
1.2 数据预处理
我们将在PyTorch中编写模型并使用TorchText帮助我们完成所需的所有预处理。我们还将使用spaCy来协助数据的标记化。
# 引入相关库
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.datasets import TranslationDataset, Multi30k
from torchtext.data import Field, BucketIterator
import spacy
import random
import math
import time
SEED=1234
random.seed(SEED)
torch.manual_seed(SEED)
# 训练模型个人的基本要求是deterministic/reproducible,或者说是可重复性。也就是说在随机种子固定的情况下,每次训练出来的模型要一样。之前遇到了两次不可重复的情况。第一次是训练CNN的时候,发现每次跑出来小数点后几位会有不一样。epoch越多,误差就越多
# 确定性卷积:(相当于把所有操作的seed=0,以便重现,会变慢)
torch.backends.cudnn.deterministic=True
加载spacy的英、德库,我只能说大陆的网太慢了,德文包11mb我下了2个小时……
spacy_de=spacy.load('de')
spacy_en=spacy.load('en')
创建分词方法,这些可以传递给TorchText并将句子作为字符串接收并将句子作为标记列表返回。
在论文中,他们发现扭转输入顺序是有益的,他们认为“在数据中引入了许多短期依赖关系,使优化问题变得更加容易”。在德文(输入端)进行了扭转。
def tokenize_de(text):
return [tok.text for tok in spacy_de.tokenizer(text)][::-1]
def tokenize_en(text):
return [tok.text for tok in spacy_en.tokenizer(text)]
# 这里增加了<sos>和<eos>
SRC=Field(
tokenize=tokenize_de,
init_token='<sos>',
eos_token='<eos>',
lower=True
)
TRG=Field(
tokenize=tokenize_en,
init_token='<sos>',
eos_token='<eos>',
lower=True
)
接下来使用英文和德文的平行语料库Multi30k dataset,使用这个语料库加载成为训练、验证、测试数据。下载地址见评论。
exts指定使用哪种语言作为源和目标(源首先),字段指定用于源和目标的字段。
train_data, valid_data, test_data=Multi30k.splits(exts=('.de','.en'),fields=(SRC,TRG))
可以对下载的数据集进行验证,前面的exts和fields做的是加标签,同时对数据集进行切分。下面对切分结果进行验证,可以看到,train_data的例子中,src是德文输入,trg是英文输出。
接下来,我们将为源语言和目标语言构建词汇表。词汇表用于将每个唯一令牌与索引(整数)相关联,这用于为每个令牌构建一个热门编码(除了索引所代表的位置之外的所有零的向量,即1)。源语言和目标语言的词汇表是截然不同的。
使用min_freq参数,我们只允许至少出现2次的标记出现在我们的词汇表中。仅出现一次令牌转换成<UNK>(未知)令牌。
要注意的是,词汇表只能从训练集而不是验证/测试集构建。这可以防止“信息泄漏”进入您的模型,为您提供人为夸大的验证/测试分数。
print(f"Number of training examples: {len(train_data.examples)}")
print(f"Number of validation examples: {len(valid_data.examples)}")
print(f"Number of testing examples: {len(test_data.examples)}")
print(vars(train_data.examples[1]))
Number of training examples: 29000
Number of validation examples: 1014
Number of testing examples: 1000
{'src': ['.', 'antriebsradsystem', 'ein', 'bedienen', 'schutzhelmen', 'mit', 'männer', 'mehrere'], 'trg': ['several', 'men', 'in', 'hard', 'hats', 'are', 'operating', 'a', 'giant', 'pulley', 'system', '.']}
SRC.build_vocab(train_data,min_freq=2)
TRG.build_vocab(train_data,min_freq=2)
print(f"Unique tokens in source (de) vocabulary: {len(SRC.vocab)}")
print(f"Unique tokens in target (en) vocabulary: {len(TRG.vocab)}")
Unique tokens in source (de) vocabulary: 7855
Unique tokens in target (en) vocabulary: 5893
最后一步是迭代器,使用BucketIterator处理。
我们还需要定义一个torch.device。这用于告诉TorchText将张量放在GPU上。我们使用torch.cuda.is_available()函数,如果在我们的计算机上检测到GPU,它将返回True。我们将此设备传递给迭代器。
当我们使用迭代器获得一批示例时,我们需要确保所有源句子都填充到相同的长度,与目标句子相同。幸运的是,TorchText迭代器为我们处理这个问题。我们使用BucketIterator而不是标准迭代器,因为它以这样的方式创建批处理,以便最小化源句和目标句子中的填充量。
device=torch.device('cpu')
print(device)
BATCH_SIZE=128
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size = BATCH_SIZE,
device = -1)
cpu
The `device` argument should be set by using `torch.device` or passing a string as an argument. This behavior will be deprecated soon and currently defaults to cpu.
The `device` argument should be set by using `torch.device` or passing a string as an argument. This behavior will be deprecated soon and currently defaults to cpu.
The `device` argument should be set by using `torch.device` or passing a string as an argument. This behavior will be deprecated soon and currently defaults to cpu.
1.3 构建Seq2Seq模型
将Seq2Seq模型分为三部分:Encoder、Decoder、Seq2Seq,每个模块之间使用接口进行操作
1.3.1 Encoder
encoder是一个2层的LSTM(原论文为4层),对于一个多层的RNN,输入句子X在底层,这一层的输出作为上层的输入。因此,使用上标来表示每一层。下面公式表示的第一层和第二层的隐藏状态
使用多层RNN同样也意味着需要赋予一个初始的隐藏状态,并且每层要输出对应的上下文向量。
我们需要知道的是,LSTM是一种RNN,它不是仅仅处于隐藏状态并且每个时间步返回一个新的隐藏状态,而是每次接收并返回一个单元状态。
我们的上下文向量现在将是最终隐藏状态和最终单元状态,即。将我们的多层方程扩展到LSTM,我们得到下面的公式。
请注意,我们只将第一层的隐藏状态作为输入传递给第二层,而不是单元状态。
下面重点来了,encoder有哪些参数
- input_dim输入encoder的one-hot向量维度,这个和输入词汇大小一致
- emb_dim嵌入层的维度,这一层将one-hot向量转为密度向量
- hid_dim隐藏层和cell状态维度
- n_layersRNN的层数
- dropout是要使用的丢失量。这是一个防止过度拟合的正则化参数。
教程中不讨论嵌入层。在单词之前还有一个步骤 - 单词的索引 - 被传递到RNN,其中单词被转换为向量。
嵌入层使用nn.Embedding,带有nn.LSTM的LSTM和带有nn.Dropout的dropout层创建。
需要注意的一点是LSTM的dropout参数是在多层RNN的层之间应用多少丢失,即在层输出的隐藏状态和用于输入的相同隐藏状态之间。 layer 。
在forward方法中,我们传入源句子,使用嵌入层将其转换为密集向量,然后应用dropout。然后将这些嵌入传递到RNN。当我们将整个序列传递给RNN时,它会自动为整个序列重复计算隐藏状态!您可能会注意到我们没有将初始隐藏或单元状态传递给RNN。这是因为,如文档中所述,如果没有将隐藏/单元状态传递给RNN,它将自动创建初始隐藏/单元状态作为全零的张量。
RNN返回:输出(每个时间步的顶层隐藏状态),隐藏(每个层的最终隐藏状态,,堆叠在彼此之上)和单元格(每个层的最终单元状态) ,,叠加在彼此之上)。
由于我们只需要最终隐藏和单元格状态(以制作我们的上下文向量),因此只返回隐藏和单元格。
每个张量的大小在代码中留作注释。在此实现中,n_directions将始终为1,但请注意,双向RNN(在教程3中介绍)将具有n_directions为2。
class Encoder(nn.Module):
def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout):
super(Encoder,self).__init__()
self.input_dim=input_dim
self.emb_dim=emb_dim
self.hid_dim=hid_dim
self.n_layers=n_layers
self.dropout=dropout
self.embedding=nn.Embedding(input_dim,emb_dim)
self.rnn=nn.LSTM(emb_dim,hid_dim,n_layers,dropout=dropout)
self.dropout=nn.Dropout(dropout)
def forward(self, src):
embedded=self.dropout(self.embedding(src))
outputs, (hidden,cell)=self.rnn(embedded)
return hidden ,cell
1.3.2 Decoder
Decoder同样也是一个两层的LSTM。
Decoder只执行一个解码步骤。第一层将从前一个时间步,接收隐藏和单元状态,并通过将当前的token 喂给LSTM,进一步产生一个新的隐藏和单元状态。后续层将使用下面层中的隐藏状态,,以及来自其图层的先前隐藏和单元状态,。这提供了与编码器中的方程非常相似的方程。
另外,Decoder的初始隐藏和单元状态是我们的上下文向量,它们是来自同一层的Encoder的最终隐藏和单元状态
接下来将隐藏状态传递给Linear层,预测目标序列下一个标记应该是什么。
Decoder的参数和Encoder类似,其中output_dim是将要输入到Decoder的one-hot向量。
在forward方法中,获取到了输入token、上一层的隐藏状态和单元状态。解压之后加入句子长度维度。接下来与Encoder类似,传入嵌入层并使用dropout,然后将这批嵌入式令牌传递到具有先前隐藏和单元状态的RNN。这产生了一个输出(来自RNN顶层的隐藏状态),一个新的隐藏状态(每个层一个,堆叠在彼此之上)和一个新的单元状态(每层也有一个,堆叠在彼此的顶部) )。然后我们通过线性层传递输出(在除去句子长度维度之后)以接收我们的预测。然后我们返回预测,新的隐藏状态和新的单元状态。
class Decoder(nn.Module):
def __init__(self, output_dim, emb_dim, hid_dim, n_layers, dropout):
super(Decoder,self).__init__()
self.emb_dim=emb_dim
self.hid_dim=hid_dim
self.output_dim=output_dim
self.n_layers=n_layers
self.dropout=dropout
self.embedding=nn.Embedding(output_dim,emb_dim)
self.rnn=nn.LSTM(emb_dim,hid_dim,n_layers,dropout=dropout)
self.out=nn.Linear(hid_dim,output_dim)
self.dropout=nn.Dropout(dropout)
def forward(self, input,hidden,cell):
input=input.unsqueeze(0)
embedded=self.dropout(self.embedding(input))
output, (hidden,cell)=self.rnn(embedded,(hidden,cell))
prediction=self.out(output.squeeze(0))
return prediction,hidden ,cell
1.3.3 Seq2Seq
最后一部分的实现,seq2seq。
- 接收输入/源句子
- 使用Encoder生成上下文向量
- 使用Decoder生成预测输出/目标句子
再看一下整体的模型
确定Encoder和Decoder每一层的数目、隐藏层和单元维度相同。
我们在forward方法中做的第一件事是创建一个输出张量,它将存储我们所有的预测,。
然后,我们将输入/源语句 / src输入编码器,并接收最终的隐藏和单元状态。
解码器的第一个输入是序列的开始(<sos>)令牌。由于我们的trg张量已经附加了<sos>标记(当我们在TRG字段中定义init_token时一直回来),我们通过切入它来得到。我们知道我们的目标句子应该是多长时间(max_len),所以我们循环多次。在循环的每次迭代期间,我们: - 将输入,先前隐藏和前一个单元状态()传递给Decoder。
- 接收预测,来自Decoder下一个隐藏状态和下一个单元状态()
- 将我们的预测, /输出放在我们的预测张量中, / outputs
- 决定我们是否要“教师强制”。
- 如果我们这样做,下一个输入是序列中的groundtruth下一个标记, / trg [t]
- 如果我们不要,下一个输入是序列中预测的下一个标记, / top1
class Seq2Seq(nn.Module):
def __init__(self, encoder, decoder, device):
super(Seq2Seq,self).__init__()
self.encoder = encoder
self.decoder = decoder
self.device = device
assert encoder.hid_dim == decoder.hid_dim, \
"Hidden dimensions of encoder and decoder must be equal!"
assert encoder.n_layers == decoder.n_layers, \
"Encoder and decoder must have equal number of layers!"
def forward(self, src,trg,teacher_forcing_ratio=0.5):
# src = [src sent len, batch size]
# trg = [trg sent len, batch size]
# teacher_forcing_ratio是使用教师强制的概率
# 例如。如果teacher_forcing_ratio是0.75,我们75%的时间使用groundtruth输入
batch_size=trg.shape[1]
max_len=trg.shape[0]
trg_vocab_size=self.decoder.output_dim
outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)
hidden, cell=self.encoder(src)
input=trg[0,:]
for t in range(1, max_len):
output, hidden, cell = self.decoder(input, hidden, cell)
outputs[t] = output
teacher_force = random.random() < teacher_forcing_ratio
top1 = output.max(1)[1]
input = (trg[t] if teacher_force else top1)
return outputs
1.4 训练模型
首先,我们将初始化我们的模型。如前所述,输入和输出维度由词汇表的大小定义。编码器和解码器的嵌入尺寸和丢失可以不同,但是层数和隐藏/单元状态的大小必须相同。
然后我们定义编码器,解码器,然后定义我们放置在设备上的Seq2Seq模型。
INPUT_DIM = len(SRC.vocab)
OUTPUT_DIM = len(TRG.vocab)
ENC_EMB_DIM = 256
DEC_EMB_DIM = 256
HID_DIM = 512
N_LAYERS = 2
ENC_DROPOUT = 0.5
DEC_DROPOUT = 0.5
enc=Encoder(INPUT_DIM,ENC_EMB_DIM,HID_DIM,N_LAYERS,ENC_DROPOUT)
dec=Decoder(OUTPUT_DIM,DEC_EMB_DIM,HID_DIM,N_LAYERS,DEC_DROPOUT)
model=Seq2Seq(enc,dec,device)
def init_weights(m):
for name, param in m.named_parameters():
nn.init.uniform_(param.data, -0.08, 0.08)
model.apply(init_weights)
Seq2Seq(
(encoder): Encoder(
(embedding): Embedding(7855, 256)
(rnn): LSTM(256, 512, num_layers=2, dropout=0.5)
(dropout): Dropout(p=0.5)
)
(decoder): Decoder(
(embedding): Embedding(5893, 256)
(rnn): LSTM(256, 512, num_layers=2, dropout=0.5)
(out): Linear(in_features=512, out_features=5893, bias=True)
(dropout): Dropout(p=0.5)
)
)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'The model has {count_parameters(model):,} trainable parameters')
The model has 13,899,013 trainable parameters
optimizer = optim.Adam(model.parameters())
PAD_IDX = TRG.vocab.stoi['<pad>']
criterion = nn.CrossEntropyLoss(ignore_index = PAD_IDX)
def train(model, iterator, optimizer, criterion, clip):
model.train()
epoch_loss = 0
for i, batch in enumerate(iterator):
src = batch.src
trg = batch.trg
optimizer.zero_grad()
output = model(src, trg)
#trg = [trg sent len, batch size]
#output = [trg sent len, batch size, output dim]
output = output[1:].view(-1, output.shape[-1])
trg = trg[1:].view(-1)
#trg = [(trg sent len - 1) * batch size]
#output = [(trg sent len - 1) * batch size, output dim]
loss = criterion(output, trg)
print(loss.item())
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
def evaluate(model, iterator, criterion):
model.eval()
epoch_loss = 0
with torch.no_grad():
for i, batch in enumerate(iterator):
src = batch.src
trg = batch.trg
output = model(src, trg, 0) #turn off teacher forcing
#trg = [trg sent len, batch size]
#output = [trg sent len, batch size, output dim]
output = output[1:].view(-1, output.shape[-1])
trg = trg[1:].view(-1)
#trg = [(trg sent len - 1) * batch size]
#output = [(trg sent len - 1) * batch size, output dim]
loss = criterion(output, trg)
epoch_loss += loss.item()
return epoch_loss / len(iterator)
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
N_EPOCHS = 2
CLIP = 1
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
start_time = time.time()
train_loss = train(model, train_iterator, optimizer, criterion, CLIP)
# valid_loss = evaluate(model, valid_iterator, criterion)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
# if valid_loss < best_valid_loss:
# best_valid_loss = valid_loss
# torch.save(model.state_dict(), 'tut1-model.pt')
print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}')
# print(f'\t Val. Loss: {valid_loss:.3f} | Val. PPL: {math.exp(valid_loss):7.3f}')
8.671906471252441
8.567961692810059
8.38569450378418
7.892151832580566
7.042192459106445
6.31839656829834
6.088204383850098
5.77440881729126
5.662734508514404
5.574016571044922
。。。
在这里我做了处理,因为显存的问题,被迫把数据和模型都放在cpu上跑了,速度奇慢,所以我把评价和模型保存部分注释掉了。看来要尽快搞定基础的,然后选一个云平台了……