iOS:为什么TCP连接要三次握手,四次挥手

前言

TCP的三次握手🤝建立连接和四次挥手👋断开连接,相信很多人都听说过,也都看过相关的内容,本篇是为了记录自己对与这两种操作的理解。

在进入正式内容之前,先来看几个符号的概念:

  • 序列号seq 用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生;给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。

  • 确认号ack 期待收到对方下一个报文段的第一个数据字节的序号;序列号表示报文段携带数据的第一个字节的编号;而确认号指的是期望接收到下一个字节的编号;因此当前报文段最后一个字节的编号+1即为确认号。

  • 确认ACK 仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效

  • 同步SYN 连接建立时用于同步序号。当SYN=1ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1ACK=1。因此,SYN=1表示这是一个连接请求,或连接接受报文。SYN这个标志位只有在TCP建产连接时才会被置1,握手完成后SYN标志位被置0。

  • 终止FIN 用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接

三次握手

首先进入一下情景:

我正在饭店里和朋友吃饭,喝的正嗨的时候,女朋友打电话过来,饭店里有很多人,环境原因听不太清电话里的声音:

我:能听到我的声音吗?

女:能听到,大点声,你能听到我讲话吗?

我:能听到,

如此这般,才能保证双方都能听到声音,才能继续对话呀。

TCP是面向连接的,无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接。在TCP/IP协议中,TCP 协议提供可靠的连接服务,连接是通过三次握手🤝进行初始化的。三次握手🤝的目的是同步连接双方的序列号和确认号并交换 TCP窗口大小信息。由此我们来对应客户端与服务器之间的建立连接:

  • 第一次握手🤝: 客户端向服务器发出连接请求报文,这时报文首部中的同部位SYN=1,同时随机生成初始序列号 seq=x,此时,客户端进程进入了 SYN-SENT状态,等待服务器的确认。
  • 第二次握手🤝: 服务器收到请求报文后,如果同意连接,则发出确认报文。确认报文中应该 ACK=1SYN=1,确认号是ack=x+1,同时也要为自己随机初始化一个序列号 seq=y,此时,服务器进程进入了SYN-RCVD状态,询问客户端是否做好准备。
  • 第三次握手🤝: 客户端进程收到确认后,还要向服务器给出确认。确认报文的ACK=1ack=y+1,此时,连接建立,客户端进入ESTABLISHED状态,服务器端也进入ESTABLISHED状态。

以上就是三次握手🤝的一个大概流程,那么问题来了:

握手🤝为什么需要三次呢,如果把最后一次的去掉改为两次握手🤝是否可行呢?

假如现在客户端想向服务端进行握手,它发送了第一个连接的请求报文,但是由于网络信号差或者服务器负载过多,这个请求没有立即到达服务端,而是在某个网络节点中长时间的滞留了,以至于滞留到客户端连接释放以后的某个时间点才到达服务端,那么这就是一个失效的报文,但是服务端接收到这个失效的请求报文后,就误认为客户端又发了一次连接请求,服务端就会想向客户端发出确认的报文,表示同意建立连接。

假如不采用三次握手,那么只要服务端发出确认,表示新的建立就连接了。但是现在客户端并没有发出建立连接的请求,其实这个请求是失效的请求,一切都是服务端在自相情愿,因此客户端是不会理睬服务端的确认信息,也不会向服务端发送确认的请求,但是服务器却认为新的连接已经建立起来了,并一直等待客户端发来数据,这样的情况下,服务端的很多资源就没白白浪费掉了。

采用三次握手的办法就是为了防止上述这种情况的发生,比如就在刚才的情况下,客户端不会向服务端发出确认的请求,服务端会因为收不到确认的报文,就知道客户端并没有要建立连接,那么服务端也就不会去建立连接,这就是三次握手的作用。

四次挥手

来,再次进入以下情景:

假如有一天我想要自由了,我就跟我的女朋友提出分手的要求:

我:我要自由,自由万岁,分手吧

女:好,你要分手是吧

然后她会骂我渣啊来发泄,或者试图挽留,在经过冷静之后:

女:那就这样吧,分

我:好的,分

至此就各奔东西,互相安好,相忘于江湖。

当客户端和服务器通过三次握手建立了TCP连接以后,当数据传送完毕,为了防止资源浪费肯定要断开TCP连接,那对于TCP的断开连接,这里就有了断开连接的四次挥手。

  • 第一次挥手👋: 客户端进程发出连接释放FIN报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=x,此时,客户端进入FIN-WAIT-1(终止等待1)状态。
  • 第二次挥手👋: 服务端进程收到连接释放FIN报文,发出确认ACK报文,ACK=1ack=x+1,并且带上自己的序列号seq=y,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。此时,服务端通知高层的应用进程,客户端向服务端的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务端若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。客户端收到服务端的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文,在这之前依然可以接收服务端发送过来的最后的数据。
  • 第三次挥手👋: 服务端将最后的数据发送给客户端完成后,就向客户端发送连接释放FIN报文,FIN=1ack=x+1,此时的序列号为seq=z,此时,服务端就进入了LAST-ACK(最后确认)状态,等待客户端的确认。
  • 第四次挥手👋: 客户端接收到服务端的连接释放FIN报文后,必须发出确认报文,ACK=1ack=z+1,而自己的序列号是seq=x+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。此时服务端收到客户端发送过来的确认报文,就立即撤销自己的传输控制块TCB,进入CLOSED状态,注意此时的TCP连接还没有释放,必须经过2MSL(最长报文段寿命)的时间后,客户端没有收到服务端发来的任何数据,证明服务端已正常关闭,此时客户端会撤销相应传输控制块TCB后,进入CLOSED状态。至此,TCP的连接才真正的断开了。(服务端结束TCP连接的时间要比客户端稍微早一些)

好的,那么问题又来了:

为什么断开连接需要四次挥手👋呢,像建立连接的时候一样,三次行不行呢?

TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP是全双工 模式,这就意味着,在客户端想要断开连接时,客户端向服务端发送FIN报文,只是表示客户端已经没有数据要发送了,但是这个时候客户端还是可以接收来自服务端的数据。

当服务端接收到FIN报文,并返回ACK报文,表示服务端已经知道了客户端要断开连接,客户端已经没有数据要发送了,但是这个时候服务端可能依然有数据要传输给客户端。

当服务端的数据传输完之后,服务端会发送FIN报文给客户端,表示服务端也没有数据要传输了,服务端同意关闭连接,之后,客户端收到FIN报文,立即发送给客户端一个ACK报文,确定关闭连接。在之后,客户端和服务端彼此就愉快的断开了这次的TCP连接。

或许会有疑问,为什么服务端的ACK报文和FIN报文都是分开发送的,但是在三次握手的时候却是ACK报文和SYN报文是一起发送的,因为在三次握手的过程中,当服务端收到客户端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是在关闭连接时,当服务端接收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉客户端,你发的FIN报文我收到了,只有等到服务端所有的数据都发送完了,才能发送FIN报文,因此ACK报文和FIN报文不能一起发送。所以断开连接的时候才需要四次挥手来完成。

验证

下面通过Wireshark抓包工具来抓包看一下三次握手和四次挥手:

工具:Wireshark

下载地址 http://www.pc6.com/mac/112232.html

安装完成之后,打开Wireshark ,开始监测网络封包。

打开两个终端窗口,建立一个连接(这里很简单,就不截图了):

在终端窗口1中,输入:nc -l 6060 回车

在终端窗口2中,输入:nc 127.0.0.1 6060 回车

两个终端建立连接之后,可以在Wireshark中看到三次握手的过程:

下面断开连接再来看一下四次挥手的过程:


如果对照前面的三次握手和四次挥手的过程图来看的话,更能明白此处的抓包到的数据。

总结

TCP的三次握手和四次挥手,个人觉得其实就是在建立连接和断开连接的时候,保证这个连接的“安全完整”。同时也保证了数据的完整发送。至此关于TCP的三次握手和四次挥手就写到这里,如有错误还请指正!

以上情景剧内容纯属虚构,毕竟,真正的车手是不需女人的。(滑稽保命)


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 196,165评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,503评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,295评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,589评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,439评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,342评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,749评论 3 387
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,397评论 0 255
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,700评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,740评论 2 313
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,523评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,364评论 3 314
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,755评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,024评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,297评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,721评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,918评论 2 336