深度残差收缩网络:(五)实验验证

实验部分将所提出的两种深度残差收缩网络,即“通道之间共享阈值的深度残差收缩网络(Deep Residual Shrinkage Networks with Channel-shared Thresholds,简称DRSN-CS)”,和“逐通道不同阈值的深度残差收缩网络(Deep Residual Shrinkage Networks with Channel-wise Thresholds,简称DRSN-CW)”,与传统的卷积神经网络(Convolutional Neural Networks, ConvNet)和深度残差网络(Deep Residual Networks, ResNet)进行了对比。实验数据是齿轮箱在八种健康状态下的振动信号,分别添加了不同程度的高斯噪声、Laplacian噪声和Pink噪声。

在不同程度的高斯噪声下的实验结果(左边是训练准确率,右边是测试准确率):

在不同程度的Laplacian噪声下的实验结果(左边是训练准确率,右边是测试准确率):

在不同程度的Pink噪声下的实验结果(左边是训练准确率,右边是测试准确率):

可以看到,在噪声越强的时候,即信噪比(Signal-to-Noise Ratio, SNR)为-5dB的时候,相较于卷积神经网络和深度残差网络的效果提升最为明显。在噪声较弱的时候,DRSN-CS和DRSN-CW的准确率也很高,这是因为DRSN-CS和DRSN-CW可以自适应地设置阈值。


转载网址:

深度残差收缩网络:(一)背景知识 https://www.cnblogs.com/yc-9527/p/11598844.html

深度残差收缩网络:(二)整体思路 https://www.cnblogs.com/yc-9527/p/11601322.html

深度残差收缩网络:(三)网络结构 https://www.cnblogs.com/yc-9527/p/11603320.html

深度残差收缩网络:(四)注意力机制下的阈值设置 https://www.cnblogs.com/yc-9527/p/11604082.html

深度残差收缩网络:(五)实验验证 https://www.cnblogs.com/yc-9527/p/11610073.html

深度残差收缩网络:(六)代码实现 https://www.cnblogs.com/yc-9527/p/12091581.html

原文链接:

M. Zhao, S. Zhong, X. Fu, B. Tang, and M. Pecht, “Deep Residual Shrinkage Networks for Fault Diagnosis,” IEEE Transactions on Industrial Informatics, 2019, DOI: 10.1109/TII.2019.2943898

https://ieeexplore.ieee.org/document/8850096

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容