更多精彩内容可以关注公众号:缄默笔记
主要介绍2021年顶会论文中,特征交叉相关的CTR模型,主要介绍7篇论文模型,如下图所示:
下文主要给出各论文标题,公众号排版更美观,各论文导读和模型介绍见:
1 WWW'21「雅虎」FmFW模型
论文:𝐹𝑀2: Field-matrixed Factorization Machines for Recommender Systems
Link:https://arxiv.org/pdf/2102.12994.pdf
中文参考:FmFM:FM类浅层CTR模型统一框架
2 WWW'21「谷歌」DCN V2模型
论文:DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
Link:https://arxiv.org/pdf/2008.13535.pdf
中文参考:DCN-M:Google提出改进版DCN
3 SIGIR'21「Boss直聘」SAM模型
论文:Looking at CTR Prediction Again: Is Attention All You Need?
Link:https://arxiv.org/pdf/2105.05563.pdf
中文参考:SAM:重新思考CTR模型中Attention的作用
4 CIKM'21「爱奇艺」FINT模型
论文:FINT: Field-aware INTeraction Neural Network For CTR Prediction
Link:https://arxiv.org/pdf/2107.01999.pdf
中文参考:FINT:基于特征域交叉的CTR模型
5 PAKDD'21「腾讯」XCrossNet模型
论文:XCrossNet: Feature Structure-Oriented Learning for Click-Through Rate Prediction
Link:https://arxiv.org/pdf/2104.10907.pdf
6 CIKM'21「阿里」DESTINE模型
论文:Disentangled Self-Attentive Neural Networks for Click-Through Rate Prediction
Link:https://arxiv.org/pdf/2101.03654.pdf
7 CIKM'21「华为」EDCN模型
论文:Enhancing Explicit and Implicit Feature Interactions via Information Sharing for Parallel Deep CTR Models
Link:https://dlp-kdd.github.io/assets/pdf/DLP-KDD_2021_paper_12.pdf