Distributed Pytorch碰到的一个问题

这两天仔细看了下分布式pytorch的文档…起因是跑分布式pytorch的时候,在training的最后一个epoch挂掉了
首先在最后一个epoch/batch挂掉的原因,肯定不会是模型的问题,因为前面几个epoch很稳定。仔细排查了下,发现是有的worker还在训练,有的worker却结束退出了,所以还在训练的worker一直等不到其他worker的回应,所以出错了。
非常简单粗暴地,用DP+all_reduce,手动地把梯度聚合的方式从同步改成了异步,就好了。
但是仔细想了想,又觉得不太对,这不应该是会出错的地方。分布式的pytorch也算是比较成熟的方案了,分布式的环境也是一个成熟的应用了,要么是pytorch+分布式出错了,要么就是我的用法不对……

分布式机器学习的训练方式

  1. 模型并行
  2. 数据并行
    顾名思义,模型并行,是模型拆分成多个模块,并行的去计算各自的梯度。用的是同一份数据,模型模型各自算各自的。数据并行则是把数据拆成多份,不同的机器上用同一份模型去计算不同的数据,每次计算之后,机器们就同步一下各自的梯度。

Distribution In Pytorch

在pytorch中,关于分布式计算,主要有三个大的组件

  1. Distributed Data Parallel(DDP)
  2. RPC-Based Distributed Training(RPC)
  3. Collective Communication(c10d)
    一般常用的分布式训练都是选择数据并行,如果模型太大放到gpu里面装不下,就只能考虑模型并行了。所以在pytorch中,常用的分布式训练,都是使用DDP这一套就够了。RPC和c10d就逐渐底层,主要是为了满足一些定制化的需要,比如pytorch里面默认的分布式架构是ring型的,但是你想要用parameter server的训练框架,那就可以用后面两种组件搭配DDP去完成模型的分布式训练。可以看出来DDP确实是非常精妙的,可以参考pytorch这边发表的关于DDP的论文(PyTorch Distributed: Experiences on Accelerating Data Parallel Training)。我只用了最普适的DDP方法,所以接下来对DDP的使用方法做一些归纳。

DDP的使用方法

最开始,pytorch数据并行这块,用的模块是DataParallel(DP),这个方法有几个缺点:

  1. just 1 processing and multi-thread。进程线程和cpu的关系我有点忘了,但是反正就是效率会低一些(doge,and 回头补充)并且python原生存在的问题是python有CIL锁,所以很难真正意义上实现多processing。
  2. 并且在分布式的环境中,DP包裹的模型,需要手动地去调用all_reduce来更新模型参数。(顺便pytorch中有几种梯度聚合的方式,详情可以参见文档)
  3. 且由于DP的1 processing模式,在多GPU的时候,会存在各个GPU负载不均衡的问题。

出于这几点原因,pytorch做了相应的优化,于是有了DDP。DDP和DP有很大的不同:

  1. DDP是multi processing的,解决了python中CIL锁争抢的问题。并且做了许多优化处理,来解决之前DP中存在的负载不均衡的问题。
  2. DDP不需要手动去update 参数梯度了,DDP内部做了相应的广播处理(是同步更新参数的)
  3. DDP可以搭配RPC或者c10d的一些方法去完成更定制化的分布式训练

DDP的使用也比较简单:(详情参考:https://pytorch.org/docs/master/generated/torch.nn.parallel.DistributedDataParallel.html

1. torch.distributed.init_process_group(backend='nccl', world_size=N, init_method='...') 
#做init操作,初始化分布式的环境,告知一共有多少的机器并行训练,用的啥后端框架做消息传递
2. model = DistributedDataParallel(model, device_ids=[i], output_device=i)
#把模型裹上DDP

一些相关不相关的distrbutedxxx

一个是DistributedSampler。可以说这个是直接解决我最初的bug…导致部分worker提前training结束的原因就是每个机器上的batch数量不相同,我用的分布式环境是sagemaker,它能够支持一种方式就是把输入根据机器数量,切成近似均匀的N等份输入,这样每个机器就不需要下载全量的数据做训练了,只要拿到1/N总数的数据,可以大大减少机器负载和download时间。但是这直接导致的就是job failed…
于是认命还是用回DistributedSampler(DS)(可以说没有特殊情况的输入,都应该用DistributedSampler)它可以根据init时指定的world_size,对dataset做shuffle和split,保证每个机器上拿到的数据是不重复的,并且是均匀的,每个机器上的batch数量一定是一样的。
顺便提一嘴,如果在sagemaker已经等分过数据的情况下,再调用DS,就会让每个机器拿到的数据是 1/(N*N)的大小了…
还有一个是DistributedOptimizer(DO)。这个数据并行的时候实际应该用不到,DO在初始化的时候,是要指定reff格式的输入参数。直白一点就是你可以指定模型的某些个参数,然后变成reff格式,指定给DO,这样优化器就会只更新分布式环境里的这几个参数了。所以一般DO是在模型并行的时候需要用的,因为数据并行的时候,每个环境下是独立拥有优化器的。

最后鸣谢pytorch document,写得真好,不愧大佬:https://pytorch.org/tutorials/beginner/dist_overview.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容