HashMap实现原理简析(哈希表)

什么是HashMap

HashMap在应用层的使用非常广泛,用来储存键值对。它使用哈希函数来做索引因此性能较高。同TreeMap相比,HashMap的插入、删除、查询时间复杂度在理想情况下达到O(1)。JDK1.8后,HashMap采用了TreeMap优化链表,因此极端情况下插入、删除、查询的效率也比线性好,达到O(lgN)。而JDK1.8以前,HashMap使用链表处理哈希碰撞,所以极端情况时间复杂度为O(N)。

什么情况用HashMap

当开发者想要储存有关联的键值对时,在不考虑并发安全性和有序性的前提下,应该使用HashMap。

例如:

    public static class Node implements Comparable<Node>{
        
        public Node(int v){
            this.value = v;
        }
        
        public int value;

        @Override
        public int compareTo(Node o) {
            return this.value-o.value;
        }
    }

    public static void main(String[] args) {
        Map<Node,Object> map=new HashMap<>();
        map.put(new Node(6), new Object());
        map.put(new Node(3), new Object());
        map.put(new Node(5), new Object());
        map.put(new Node(4), new Object());
        map.put(new Node(1), new Object());
        map.put(new Node(11), new Object());
        Iterator<Node> iterator = map.keySet().iterator();
        while(iterator.hasNext()){
            Node n = iterator.next();
            System.out.println(n.value+" , "+map.get(n));
        }
        
    }

输出结果:

5 , java.lang.Object@33909752
11 , java.lang.Object@55f96302
1 , java.lang.Object@3d4eac69
6 , java.lang.Object@42a57993
3 , java.lang.Object@75b84c92
4 , java.lang.Object@6bc7c054

HashMap运行插入的键是null,如果键是null,其哈希值为0,所以null型键值对会插入到数组的首个位置。

HashMap内部实现

基于JDK1.8分析


HashMap结构图.png

HashMap内部依赖数组、链表、红黑树实现。

数组/链表节点

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
    }

HashMap将插入的键值对封装在Node对象中,每个Node对象含有hash值,键对象key,值对象value。当哈希值冲突后,新增的Node会被next变量指向,组成链表。当该链表的长度超过8,将其转换为红黑树节点。

红黑树节点

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
}

容量及扩容

HashMap构造方法并没有对内部的table数组初始化,可能是为了防止未使用的情况下浪费内存。当初次执行插入,如果数组为空就会初次调用扩容方法resize()创建table数组。

 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;  //初次调用扩容函数
        ...
        if (++size > threshold)
            resize();
}

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;  //初始长度为0
        int oldThr = threshold;  //如果HashMap构造方指定了初始长度和加载因子,threshold会被计算出来
        int newCap, newThr = 0;
        if (oldCap > 0) {
            //第二次及以后的扩容走这里
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;  //初始化长度和加载因子走这里
        else {               // zero initial threshold signifies using defaults  //初始默认执行这个分支
            newCap = DEFAULT_INITIAL_CAPACITY; //默认长度
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); //默认临界值
        }
}

如果未指定HashMap的构造方法参数,数组初始长度为DEFAULT_INITIAL_CAPACITY(16),加载因子为DEFAULT_LOAD_FACTOR(0.75)。开发者也可以通过HashMap的构造方法指定初始长度和加载因子。

HashMap的容量超过当前数组长度*加载因子,就会执行resize()算法,该算法将创建一个新的数组,长度是原来的两倍(旧的长度左移一位),并且将原来的HashMap数组的节点转换到新的数组。同时threshold变量也会是原来的两倍,该变量用来判断HashMap在插入后是否应该扩容。

** 疑问:为什么扩容要将原长度左移一位呢? 因为性能问题?**

插入算法

取哈希值

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

首先调用Object的hashCode()方法算出key的哈希值,该方法在native层实现。接着将key的哈希值(int型32位)无符号右移16位,即取它的高16位返回,右移后高16位变成0,原高16位移动到低16位。

取数组中的位置

再来看具体的插入putVal方法:

 Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);

这里n是table数组的长度,hash是key的哈希值经过高16位转低16位的int值。

这里计算节点在table数组的位置的算法是:i = (n - 1) & hash,将数组长度减1后与运算hash。这个算法就很巧妙了,记得上面说过数组的长度一定是2的幂,即使初始长度非2的幂也会强制转换为2的幂:

this.threshold = tableSizeFor(initialCapacity);

    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
  

假设传入cap=5,最后输出长度为8。加入传入cap=9,最后输出长度为16。所以n-1的二进制形式分别是111,1111。

** 用hash与(n-1)做位置运算相比%运算更高效,这可能就是HashMap数组长度为2的幂的原因吧。并且这种巧妙的设计也能保证位置i不会超过数组长度。**

非冲突的情况

 if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);

    Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
        return new Node<>(hash, key, value, next);
    }

根据key算出hash值后,再通过** “(n-1)&hash” **算出键值对在数组中对应的位置,如果table[i]为空直接将键值对封装到Node插入table[i]。

冲突的情况

首个位置的键与新插入的键相等

if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;

当table[i]非空,且key==table[i].key 或者 key非空,key.equals(table[i],key)。说明table[i]上的节点的键key等同于新插入的键,这种情况下令新插入的节点为table[i]。下面会将table[i]中的value替换为新插入的value。

首个位置是红黑树的节点

else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);

上面说到,如果哈希表发生了哈希碰撞,冲突的节点会插入到以table[i]为链表头的尾部。如果该链表长度超过8,会转换成红黑树。因此table[i]既可能是链表头,也可能是红黑树的根部。

如果tablei是红黑树的节点,说明该hash值冲突的节点冲过了8个,将新的键值对插入红黑树。

首个位置是链表节点

                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) { @1
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st 
                            treeifyBin(tab, hash); @3
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        @2
                        break;
                    p = e;
                }

@1 如果遍历到链表的末尾,说明遍历的过程中未找到key相等的节点,将键值对插入末尾
@2 如果遍历链表的过程中,存在哈希值一致,引用相等或equals相等的节点,终止遍历,新键值对的值会替换这个节点上原来的值。
@3 在链表末尾插入新节点后,链表的长度达到8,此时方法treeifyBin(tab, hash)将链表转换为红黑树

替换原节点中的Value

            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }

对于已经在链表或红黑树存在的节点,只会替换原Value就返回。

插入后的扩容

        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;

在前面已经描述过,当HashMap的size超过了 长度*负载因子,就会执行resize()方法扩容,将原table数组长度扩大两倍。

        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e; @1
                    else if (e instanceof TreeNode) @2
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order @3
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }

这段代码将原数组中的元素插入到新数组中,具体表现为:
@1 将非链表非红黑树的节点计算新位置后重新插入新数组。
@2 将原红黑树插入新的数组
@3 将原链表插入新的数组

这里要注意的是,扩容后(n-1)的值在高一位多了1,因此原来的链表和红黑树的节点的位置可能出现高一位多了1,所以不能简单的直接将头节点移动到新数组,需要重新计算位置。而哈希值不需要重新计算,所以这可能就是** (n-1)&hash **这个算法的好处吧。

取出算法

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

取出算法其实就是插入算法的逆向过程,你可能直接从table[i]中取走键值对,也可能是红黑树或者链表中的一个节点。

要注意的是只满足equlas相等并不能有效取出元素,还必须满足哈希值相等,所以要考虑重写key的hashCode()方法。

HashMap小结

  • JDK1.8以后用红黑树对HashMap的链表做了优化,因此使得HashMap的最差性能从O(n)提升到O(lgn)。
  • 扩容是一件很耗费性能和内存的事情,除了要创建新数组,还要将原数组中的链表或红黑树重新计算位置(不重新计算哈希值),然后插入新的数组。
  • 如果HashMap创建时就知道对面的是多大容量的数据,可以指定初始容量和负载因子。
  • HashMap和TreeMap都是非线程安全的,建议使用ConcurrentHashMap处理并发安全问题。Hashtable的并非像ConcurrentHashMap对数组的每个位置加锁,而是对操作加锁,性能较差。另外Collections.synchronizedMap(map)这种方法也是在Map对象的方法上装饰了synchronized关键字,因此同Hashtable性能较差。
  • LinkedHashMap继承于HashMap,替HashMap完成了输入顺序的记录功能,所以要想实现像输出同输入顺序一致,应该使用LinkedHashMap。

参考

Java 8系列之重新认识HashMap

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容