关于A/B测试你需要知道的10条准侧

在产品迭代或运营优化策略上,聪明的团队总是会为同一个增长目标提供多个解决方案,如何择其一还能保证最终效果是最优的,很多时候,就会用数据来辅助决策。这时候,A\B测试就显得必不可少,对于这样的科学实践,方法论显得尤为重要,译文即为原作者总结的A/B测试的10条准则。

规则一:抛弃固有的认知

很多时候,我们会基于用户的属性信息,特别是年龄,性别,地域或收入来认识他们,尽可能不要酱紫,曾经用户的信息是寻找目标用户的最佳方式(或唯一方式),的确,他现在也依然重要,但在线上市场,我们有了非常多的切入点去一对一去探索用户最真实需求的能力。

规则二:明确当前指标值

转化率优化是你急需着手的目标,但是,在进行高风险的A/B测试之前,需要提前确定一个基准线,如果不知道当前的转化率,又怎么能知道未来的测试是否成功呢?

规则三:别人的经验不一定适用于你

如果某一转化率优化策略适用于所有产品,那还有什么必要测试呢?这样的话,所有人只需要借(chao)鉴(xi)即可。其实,区别还是很大的。

假设A公司是卖鞋的电商平台,B公司是企业级服务的平台,很明显,就算他们有相同的客户,购买决策周期也完全不一样,对A公司而言,把购买按钮从红色换成绿色可能会带来15%的销量增长,But,放到B公司,却不一定有同样的结果。

规则四:尽可能保证变量唯一

当做AB测试时,一次测试只测试一个变量有助于让结果更有说服力。

规则五:在没达到置信水平时不要下结论

在AB测试中,统计置信是指当同一个测试再次被进行时,有同样结果的可能性。换句话说,是看你测试结果的确定性。

举例,假如你在做一项购物车页面的A/B测试,A代表使用单选按钮,B代表使用下拉菜单,假设B带来了75%的转化提升。那么,B方案胜出?

还真不一定,这里还有其他需要考虑的点:

1、样本大小:

样本大小会对置信度产生相当的影响。还是以上述例子来说,如果你的样本是4个人,就意味着只有3个人选择了下拉菜单,从起步来说还算不错,但当样本量扩大到1000时,我们想要保持相同转化率的可能性是微乎其微的,也就是说,当下我们的测试结果置信度非常低。

2、置信水平:

在一个500的样本量里,99%的用户都选择了下拉菜单,你判断出错的可能性较小(因为容错率小)。但如果只有51%的用户选择了下拉菜单而49%的用户选择了单选按钮,那随机性就不得不考虑了,所以你需要继续测试直到有一个较高的置信水平。

3、用户规模:

如果你的总用户量是25w而你的样本量是25,同样也会出现一个比较低的置信水平。

规则六:循序渐进(walk before you run)

由于用户的认知和预期的变化,CRO也会是一个变化的目标,所以,犯错在所难免,重要的是在过程中总结经验,这样会为之后的测试产生累积价值。

规则七:多维度收集用户反馈

用户测试从未如此重要,也从未如此简单,就算你没有个牛逼的用研团队,也可以选择很多免费(或花费很少)的工具进行用户调研。

比如

1、Peek

一个可以很简单并且可以让你快速收集用户对网站的定性反馈

优点:反馈比较客观、细致而且免费

缺点:无法测试目标用户群之外的用户。而且,耗时太久,所以要收集数量巨大的反馈比较困难

2、Amazon Turk

通过定量分析(比如问卷调研)帮助你在短时间内收集到上千真实用户的反馈

优点:价格亲民,可扩展性强,数量级大,可以预设置一些条件

缺点:通常是通过问卷调研来做,或者可以理解为需要人为操作。

当然了,有用户反馈总比没有好

规则8:用户行为数据可能和结果性数据有矛盾

结果性数据固然重要,但要注意很多时候可能没有行为数据来的真实。

比如,你急着要打印一些重要文件好去开会,刚打印了3页就发现需要换墨盒了。 那么你会怎么处理呢?先停下来,想想你内心真实的答案是啥。

你也许会说你会换掉墨盒然后继续打印。对,这是一个最终结果。

然而,在一个真实的场景里,其实你已经踢了打印机四次,清空了卡纸,猛戳了7次“取消”键。然后才换了墨盒。 你归整文件时,你又把咖啡洒在了体恤上,简直生无可恋……然后不得不调整会议时间。在结果性数据中,其实你并不会刻意去就你的想法撒谎。毕竟你也确实换了墨盒。 但是如果仅凭结果性数据,就会漏掉很多细节。

规则9:明确定义你的目标值

实验前,明确或预估一个目标值。心里有个目标,然后围绕目标来优化,一定程度上可以理解为KPI

规则10:不要测试那些影响较小的因素

基于业务的核心价值去做实验,聚焦能提升产品核心价值的因素

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容

  • -- 原创,未经授权,禁止转载 2017.11.15 -- 对于推荐系统,本文总结内容,如下图所示: 文章很长,你...
    rui_liu阅读 42,918评论 14 256
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,580评论 18 139
  • 努力做一个极简主义者吧 001极简购物,之前买东西确实是有购物狂和囤货癖,现在抽屉里还有一整套的化妆品和护肤品屯着...
    芳芳Fancy阅读 139评论 0 1
  • 儿子小名叫虎皮。有的人问为什么不叫老虎、虎子,多威风呀,而要用老虎的皮做名字呢?有的人问和虎皮尖椒是不是有关系?虎...
    一剑飘香999阅读 224评论 1 0