暗通道去雾算法原理及实现

暗通道去雾算法原理及实现

1. 算法原理。

基本原理来源于何凯明大神的CVPR09的论文Single Image Haze Removal Using Dark Channel Prior

  • 暗通道。
    所谓暗通道是一个基本假设,这个假设认为,在绝大多数的非天空的局部区域中,某一些像素总会有至少一个颜色通道具有很低的值。这个其实很容易理解,实际生活中造成这个假设的原因有很多,比如汽车,建筑物或者城市中的阴影,或者说色彩鲜艳的物体或表面(比如绿色的树叶,各种鲜艳的花,或者蓝色绿色的睡眠),颜色较暗的物体或者表面,这些景物的暗通道总是变现为比较暗的状态。
    所以暗通道是什么呢?其实比较简单,作者认为暗通道是:

暗通道先验理论指出:

暗通道实际上是在rgb三个通道中取最小值组成灰度图,然后再进行一个最小值滤波得到的。我们来看一下有雾图像和无雾图像暗通道的区别:

可以发现,有雾的时候会呈现一定的灰色,而无雾的时候咋会呈现大量的黑色(像素为接近0),作者统计了5000多副图像的特征,基本都符合这样一条先验定理。

  • 雾图形成模型
    计算机视觉中,下面这个雾图形成模型是被广泛使用的:

其中I(x)是现有的图像(待去雾),J(x)是要恢复的原无雾图像,A是全球大气光成分,t(x)是透射率,现在的条件就是已知I(x),来求J(x),显然不加任何限制的话是有无穷多个解的。

但是现实生活中,即使是晴天白云,空气中也会存在一些颗粒,看远方的物体还是能够感觉到雾的影响,另外,雾的存在可以让人们感觉到景深的存在,所以我们保留一部分的雾,上式修正为:其中w是[0-1]之间的一个值,一般取0.95差不多。

上面的推导都是假设全球大气光是已知的,实际中,我们可以借助暗通道图来从有雾图像中来获取该值:

  1. 从暗通道图中按照亮度大小取前0.1%的像素。
  2. 在这些位置中,在原始图像中寻找对应具有最高亮度点的值,作为A值。

到这里,我们就可以进行无雾图像的恢复了:

当投射图t很小时,会导致J的值偏大,会导致图片某些地方过爆,所以一般可以设置一个阈值来限制,我们设置一个阈值:一般设置较小,0.1即可。

利用这个理论的去雾效果就不错了,下面是我在网上找的例子:

但是这个去雾效果还是挺粗糙的,主要原因是由于透射率图过于粗糙了,何凯明在文章中提出了soft matting方法,然后其缺点是速度特别慢,不适用在实时场合,2011年,又提出可以使用导向滤波的方式来获得更细腻的结果,这个方法的运算主要集中在方框滤波(均值滤波),而这种操作在opencv或者其他的图像库中都有快速算法。可以考虑使用。

2.代码实现。

我很快在网上找到一个python版本的算法:

# -*- coding: utf-8 -*-
"""
Created on Sat Jun  9 11:28:14 2018

@author: zhxing
"""

import cv2  
import numpy as np  
   
def zmMinFilterGray(src, r=7):  
    '''''最小值滤波,r是滤波器半径'''  
    return cv2.erode(src,np.ones((2*r-1,2*r-1)))
# =============================================================================
#     if r <= 0:  
#         return src  
#     h, w = src.shape[:2]  
#     I = src  
#     res = np.minimum(I  , I[[0]+range(h-1)  , :])  
#     res = np.minimum(res, I[range(1,h)+[h-1], :])  
#     I = res  
#     res = np.minimum(I  , I[:, [0]+range(w-1)])  
#     res = np.minimum(res, I[:, range(1,w)+[w-1]])  
# =============================================================================
 #   return zmMinFilterGray(res, r-1)  
   
def guidedfilter(I, p, r, eps):  
    '''''引导滤波,直接参考网上的matlab代码'''  
    height, width = I.shape  
    m_I = cv2.boxFilter(I, -1, (r,r))  
    m_p = cv2.boxFilter(p, -1, (r,r))  
    m_Ip = cv2.boxFilter(I*p, -1, (r,r))  
    cov_Ip = m_Ip-m_I*m_p  
   
    m_II = cv2.boxFilter(I*I, -1, (r,r))  
    var_I = m_II-m_I*m_I  
   
    a = cov_Ip/(var_I+eps)  
    b = m_p-a*m_I  
   
    m_a = cv2.boxFilter(a, -1, (r,r))  
    m_b = cv2.boxFilter(b, -1, (r,r))  
    return m_a*I+m_b  
   
def getV1(m, r, eps, w, maxV1):  #输入rgb图像,值范围[0,1]  
    '''''计算大气遮罩图像V1和光照值A, V1 = 1-t/A'''  
    V1 = np.min(m,2)                                         #得到暗通道图像  
    V1 = guidedfilter(V1, zmMinFilterGray(V1,7), r, eps)     #使用引导滤波优化  
    bins = 2000  
    ht = np.histogram(V1, bins)                              #计算大气光照A  
    d = np.cumsum(ht[0])/float(V1.size)  
    for lmax in range(bins-1, 0, -1):  
        if d[lmax]<=0.999:  
            break  
    A  = np.mean(m,2)[V1>=ht[1][lmax]].max()  
           
    V1 = np.minimum(V1*w, maxV1)                   #对值范围进行限制  
       
    return V1,A  
   
def deHaze(m, r=81, eps=0.001, w=0.95, maxV1=0.80, bGamma=False):  
    Y = np.zeros(m.shape)  
    V1,A = getV1(m, r, eps, w, maxV1)               #得到遮罩图像和大气光照  
    for k in range(3):  
        Y[:,:,k] = (m[:,:,k]-V1)/(1-V1/A)           #颜色校正  
    Y =  np.clip(Y, 0, 1)  
    if bGamma:  
        Y = Y**(np.log(0.5)/np.log(Y.mean()))       #gamma校正,默认不进行该操作  
    return Y  
   
if __name__ == '__main__':  
    m = deHaze(cv2.imread('test.jpg')/255.0)*255  
    cv2.imwrite('defog.jpg', m)  

最小值滤波我给用腐蚀来替代了,其实腐蚀就是最小值滤波,最大值滤波是膨胀。这个测试效果还不错。

这份python代码中使用的是暗通道和RGB图像的最小值图像(实际上是一种灰度图)来进行导向滤波,我试着用灰度图和暗通道来做,也是可以的,效果区别不大。

这个python版本跑的还是挺慢的,600-500的图像需要花费近0.1s的时间,我照着这个写了一个c++版本的,速度立马提高一倍,代码比python要长一些,就不在这里贴了,相同的图像速度可以提高一倍以上,如果加上GPU加速的话应该可以实现实时处理。

c++ code,这个工程里还包含了视频去抖,图像灰度对比对拉伸,以及去燥(这个效果还不好)的代码。

3. 各参数的影响。

  1. 暗通道最小值滤波半径r。
    这个半径对于去雾效果是有影响的。一定情况下,半径越大去雾的效果越不明显,建议的范围一般是5-25之间,一般选择5,7,9等就会取得不错的效果。
  2. w的影响自然也是很大的。
    这个值是我们设置的保留雾的程度(c++代码中w是去除雾的程度,一般设置为0.95就可以了)。这个基本不用修改。
  3. 导向滤波中均值滤波半径。
    这个半径建议取值不小于求暗通道时最小值滤波半径的4倍。因为前面最小值后暗通道时一块一块的,为了使得透射率图更加精细,这个r不能过小(很容易理解,如果这个r和和最小值滤波的一样的话,那么在进行滤波的时候包含的块信息就很少,还是容易出现一块一块的形状)。
  4. eps,这个值只是保证除号下面不是0,一般取较小,0.001是一个常用的值。

4. notes。

  1. 这个去雾算法只针对彩色图像,而且对于低对比度的天空或者水面背景的去雾效果会产生块效应,去雾效果不好,而且这种效应并不能通过调参来避免。
  2. 暗通道去雾使得图像整体的亮度有所降低,所以在最后可以自适应的提高亮度来减轻这种现象。
  3. 导向滤波在matlab中有现成函数,在opencv contrib里也有函数可以调用,另外为了加速运算可以下采样之后进行滤波然后再上采样恢复。

code: code

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343