Python 垃圾回收机制和如何解决循环引用

  1. 引用计数:是一种垃圾收集机制,而且也是一种最直观,最简单的垃圾收集技术, 当一个对象的引用被创建或者复制时,对象的引用计数加 1;当一个对象的引用被销毁时,对象的引用计数减 1;当对象的引用计数减少为 0 时,就意味着对象已经没有被任何人使用了,可以将其所占用的内存释放了。虽然引用计数必须在每次分配和释放内存的时候加入管理引用计数的动作,然而与其他主流的垃圾收集技术相比,引用计数有一个最大的有点,即“实时性”,任何内存,一旦没有指向它的引用,就会立即被回收。而其他的垃圾收集计数必须在某种特殊条件下(比如内存分配失败)才能进行无效内存的回收。
  2. 引用计数机制执行效率问题:引用计数机制所带来的维护引用计数的额外操作与 Python 运行中所 进行的内存分配和释放,用赋值的次数是成正比的。而这点相比其他主流的垃圾回收机制,比如“标 记-清除”,“停止-复制”,是一个弱点,因为这些技术所来的额外操作基本上只是与待回收的内存 数量有关。
  3. 如果说执行效率还仅仅是引用计数机制的一个软肋的话,那么很不幸,引用计数机制还存在着一个 致命的弱点,正是由于这个弱点,使得侠义的垃圾收集从来没有将引用计数包含在内,能引发出这个致 命的弱点就是循环引用(也称交叉引用)。
  4. 问题说明: 循环引用可以使一组对象的引用计数不为 0,然而这些对象实际上并没有被任何外部对象所引用, 它们之间只相互引用。这意味着不会再有人使用这组对象,应该回收这组对象所占用的内存空间,然 后由于相互引用的存在,每一个对象的用计数都不为 0,因此这些对象所占用的内存永远不会被释放。 比如:这一点是致命的,这与手动进行内存管理所产生的内存泄露毫无区别。
  5. 要解决这个问题,Python 引入了其他的垃圾收集机制来弥补引用计数的缺陷:“标记-清除”,“分 代回收”两种收集技术。
  6. 标记-清除:标记-清除”是为了解决循环引用的问题。可以包含其他对象引用的容器对象(比如:list, set,dict,class,instance)都可能产生循环引用。
  7. 我们必须承认一个事实,如果两个对象的引用计数都为 1,但是仅仅存在他们之间的循环引用,那 么这两个对象都是需要被回收的,也就是说,它们的引用计数虽然表现为非 0,但实际上有效的引用计 数为 0。我们必须先将循环引用摘掉,那么这两个对象的有效计数就现身了。假设两个对象为 A、B, 我们从 A 出发,因为它有一个对 B 的引用,则将 B 的引用计数减 1;然后顺着引用达到 B,因为 B 有一 个对 A 的引用,同样将 A 的引用减 1,这样,就完成了循环引用对象间环摘除。
  8. 但是这样就有一个问题,假设对象 A 有一个对象引用 C,而 C 没有引用 A,如果将 C 计数引用减 1, 而最后 A 并没有被回收,显然,我们错误的将 C 的引用计数减 1,这将导致在未来的某个时刻出现一个 对 C 的悬空引用。这就要求我们必须在 A 没有被删除的情况下复原 C 的引用计数,如果采用这样的方 案,那么维护引用计数的复杂度将成倍增加。
  9. 原理:“标记-清除”采用了更好的做法,我们并不改动真实的引用计数,而是将集合中对象的引用 计数复制一份副本,改动该对象引用的副本。对于副本做任何的改动,都不会影响到对象生命走起的维 护。
  10. 这个计数副本的唯一作用是寻找 root object 集合(该集合中的对象是不能被回收的)。当成功寻 找到 root object 集合之后,首先将现在的内存链表一分为二,一条链表中维护 root object 集合,成 为 root 链表,而另外一条链表中维护剩下的对象,成为 unreachable 链表。之所以要剖成两个链表, 是基于这样的一种考虑:现在的 unreachable 可能存在被 root 链表中的对象,直接或间接引用的对象, 这些对象是不能被回收的,一旦在标记的过程中,发现这样的对象,就将其从 unreachable 链表中移到 root 链表中;当完成标记后,unreachable 链表中剩下的所有对象就是名副其实的垃圾对象了,接下 来的垃圾回收只需限制在 unreachable 链表中即可。
  11. 分代回收 背景:分代的垃圾收集技术是在上个世纪 80 年代初发展起来的一种垃圾收集机制,一系 列的研究表明:无论使用何种语言开发,无论开发的是何种类型,何种规模的程序,都存在这样一点相 同之处。即:一定比例的内存块的生存周期都比较短,通常是几百万条机器指令的时间,而剩下的内存 块,起生存周期比较长,甚至会从程序开始一直持续到程序结束。
  12. 从前面“标记-清除”这样的垃圾收集机制来看,这种垃圾收集机制所带来的额外操作实际上与系统 中总的内存块的数量是相关的,当需要回收的内存块越多时,垃圾检测带来的额外操作就越多,而垃圾 回收带来的额外操作就越少;反之,当需回收的内存块越少时,垃圾检测就将比垃圾回收带来更少的额 外操作。为了提高垃圾收集的效率,采用“空间换时间的策略”。
  13. 原理:将系统中的所有内存块根据其存活时间划分为不同的集合,每一个集合就成为一个“代”, 垃圾收集的频率随着“代”的存活时间的增大而减小。也就是说,活得越长的对象,就越不可能是垃圾, 就应该减少对它的垃圾收集频率。那么如何来衡量这个存活时间:通常是利用几次垃圾收集动作来衡量, 如果一个对象经过的垃圾收集次数越多,可以得出:该对象存活时间就越长。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容