1,基础概念
Java中单例模式是一种比较常见的设计模式,单例模式的种类有:饿汉式单例、懒汉式单例、登记式单例三种。
单例模式的特点:
1,单例类中只能有一个实例
2,单例类必须自己创建自己的唯一实例
3,单例类必须给所有其他对象提供这一实例。
单例模式确保某个类中只有一个实例,而且自行实例化并向整个系统提供这个实例。在计算机系统中,线程池、缓存、日志对象、对话框、打印机、显卡的驱动程序对象常被设计成单例。这些应用都或多或少具有资源管理器的功能。每台计算机可以有若干通信端口,系统应当集中管理这些通信端口,以避免一个通信端口同时被两个请求同时调用。总之,选择单例模式就是为了避免不一致状态,避免政出多头。
单例模式的好处:
1,它能够避免对象的重复创建,不仅可以减少每次创建对象的时间开销,还可以节约内存空间。
2,能够避免由于操作多个实例导致的逻辑错误。如果一个对象有可能贯穿整个应用程序,而且起到了全局统一管理控制的作用,那么单例模式也许是一个值得考虑的选择。
单例模式有很多种实现方式,下面会对这几种实现方式逐一介绍。
2,饿汉模式
public class Singleton{
private static final Singleton singleton = new Singleton();
private Singleton(){}
public static Singleton newInstance(){
return singleton;
}
}
从代码种可以看到,这个类的构造函数是私有的,所以保证其他类不能实例化这个类,然后提供了一个静态实例并返回给调用者。饿汉模式是最简单的一种设计单例模式,在类加载的时候就创建实例,实例在整个程序周期都会存在。
饿汉模式的优缺点:
优点:在类加载的时候创建一次实例,不会存在多个线程创建多个实例的情况,避免了多线程同步的问题。
缺点:它的缺点也很明显,即使这个单例没有用到也会被创建,而且在类加载之后就被创建,内存就被浪费了。
饿汉模式使用场景:
这种实现方式适合单例占用内存比较小,在初始化时就会被用到的情况。但是,如果单例占用的内存比较大,或单例只是在某个特定场景下才会用到,使用饿汉模式就不合适了,这时候就需要用到懒汉模式进行延迟加载。
3,懒汉模式
public class Singleton{
private static final Singleton singleton = null;
private Singleton(){}
public static Singleton newInstance(){
if(singleton == null){
singleton = new Singleton();
}
return singleton;
}
}
懒汉模式就是在需要的时候进行实例化,如果单例已经创建,再次调用获取接口将不会重新创建新的对象,而是直接返回之前创建的对象。如果某个单例使用的次数少,并且创建单例消耗的资源较多,那么就需要实现单例的按需创建,这个时候使用懒汉模式就是一个不错的选择。
但是这种懒汉模式有一个致命的缺点,那就是安全性没法保证。在多个线程可能会并发调用它的
getInstance()
方法,导致创建多个实例,因此需要加锁解决线程同步问题,实现如下。
public class Singleton{
private static final Singleton singleton = null;
private Singleton(){}
public static synchronized Singleton newInstance(){
if(singleton == null){
singleton = new Singleton();
}
return singleton;
}
}
4,双重校验锁
加锁的懒汉模式看起来即解决了线程并发问题,又实现了延迟加载,然而它存在着性能问题,依然不够完美。
synchronized
修饰的同步方法比一般方法要慢很多,如果多次调用getInstance()
,累积的性能损耗就比较大了。因此就有了双重校验锁,先看下它的实现代码。
public class Singleton {
private static Singleton singleton = null;
private Singleton(){}
public static Singleton getInstance() {
if (singleton == null) {
synchronized (Singleton.class) {
if (singleton == null) {// 2
singleton = new Singleton();
}
}
}
return singleton;
}
}
可以看到上面在同步代码块外多了一层
singleton
为空的判断。由于单例对象只需要创建一次,如果后面再次调用getInstance()
只需要直接返回单例对象。因此,大部分情况下,调用getInstance()
都不会执行到同步代码块,从而提高了程序性能。不过还需要考虑一种情况,假如两个线程A、B,A执行了if (singleton== null)
语句,它会认为单例对象没有创建,此时线程切到B也执行了同样的语句,B也认为单例对象没有创建,然后两个线程依次执行同步代码块,并分别创建了一个单例对象。为了解决这个问题,还需要在同步代码块中增加if (singleton== null)
语句,也就是上面看到的代码2。
我们看到双重校验锁即实现了延迟加载,又解决了线程并发问题,同时还解决了执行效率问题,是否真的就万无一失了呢?
这里要提到Java中的指令重排优化。所谓指令重排优化是指在不改变原语义的情况下,通过调整指令的执行顺序让程序运行的更快。
JVM
中并没有规定编译器优化相关的内容,也就是说JVM
可以自由的进行指令重排序的优化。
这个问题的关键就在于由于指令重排优化的存在,导致
初始化Singleton
和将对象地址赋给singleton字段
的顺序是不确定的。在某个线程创建单例对象时,在构造方法被调用之前,就为该对象分配了内存空间并将对象的字段设置为默认值。此时就可以将分配的内存地址赋值给singleton
字段了,然而该对象可能还没有初始化。若紧接着另外一个线程来调用getInstance()
,取到的就是状态不正确的对象,程序就会出错。
以上就是双重校验锁会失效的原因,不过还好在
JDK1.5
及之后版本增加了volatile
关键字。volatile
的一个语义是禁止指令重排序优化,也就保证了singleton
变量被赋值的时候对象已经是初始化过的,从而避免了上面说到的问题。代码如下:
public class Singleton {
private static volatile Singleton singleton = null;
private Singleton(){}
public static Singleton getInstance() {
if (singleton == null) {
synchronized (Singleton.class) {
if (singleton == null) {
singleton = new Singleton();
}
}
}
return singleton;
}
}
5,静态内部类
除了上面的三种方式,还有另外一种实现单例的方式,通过静态内部类来实现。首先看一下它的实现代码:
public class Singleton{
private static class SingletonHolder{
public static Singleton instance = new Singleton();
}
private Singleton(){}
public static Singleton newInstance(){
return SingletonHolder.instance;
}
}
这种方式同样利用了类加载机制来保证只创建一个singleton实例。它与饿汉模式一样,也是利用了类加载机制,因此不存在多线程并发的问题。不一样的是,它是在内部类里面去创建对象实例。这样的话,只要应用中不使用内部类,
JVM
就不会去加载这个单例类,也就不会创建单例对象,从而实现懒汉式的延迟加载。也就是说这种方式可以同时保证延迟加载和线程安全。
上面四种实现单例模式的方式都有共同的缺点:
1,需要额外的工作来实现序列化,否则每次反序列化一个序列化的对象时都会创建一个新的实例。
2,可以使用反射强行调用私有构造器(如果要避免这种情况,可以修改构造器,让它在创建第二个实例的时候抛异常)。
而枚举类很好的解决了这两个问题,使用枚举除了线程安全和防止反射调用构造器之外,还提供了自动序列化机制,防止反序列化的时候创建新的对象。
6,枚举
再来看下最后一种实现方式:枚举。
public enum Singleton{
instance;
public void whateverMethod(){}
}
7,小结
本篇文章介绍了Java中单例模式的五种实现方式,在没有特殊需求的情况下,个人建议使用双重校验锁
和静态内部类
实现单例模式。由于纯手打,难免会有纰漏,如果发现错误的地方,请第一时间告诉我,这将是我进步的一个很重要的环节。