题目描述:
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle
containing only 1's and return its area.
Example:
Input:
[
["1","0","1","0","0"],
["1","0","1","1","1"],
["1","1","1","1","1"],
["1","0","0","1","0"]
]
Output: 6
这道题可以类似之前那道Largest Rectangle in Histogram 直方图中最大的矩形一样求解。主要思路是,每一行都可以看作是求解一个直方图中的最大矩形。因此,只需要将每一层当作直方图的底,并向上构造直方图即可。
直方图的高可以用dp得到:
- 若matrix[i][col] == 1, 则height[i] = height[i-1]+1
- 若matrix[i][col] == 0, 则height[i] = 0
方法一:
class Solution {
public:
int maximalRectangle(vector<vector<char>>& matrix) {
if (matrix.empty() || matrix[0].empty()) return 0;
int res = 0, m = matrix.size(), n = matrix[0].size();
vector<int> height(n + 1);
for (int i = 0; i < m; ++i) {
stack<int> s;
for (int j = 0; j < n + 1; ++j) {
if (j < n) {
height[j] = matrix[i][j] == '1' ? height[j] + 1 : 0;
}
while (!s.empty() && height[s.top()] >= height[j]) {
int cur = s.top(); s.pop();
res = max(res, height[cur] * (s.empty() ? j : (j - s.top() - 1)));
}
s.push(j);
}
}
return res;
}
};
第二种种方法的思路比较巧:
height 数组和上面一样,
left[j]表示:包含第j列的连续都是1的左边界的位置(若height[j]=0,则 left[j]=0)
right[j]表示:包含第j列的连续都是1的右边界的位置再加1(加1是为了计算长度方便,直接减去左边界位置就是长度)
那么对于任意一行的第j列,矩形为 (right[j] - left[j]) * height[j],我们举个例子来说明,比如给定矩阵为:
[
[1, 1, 0, 0, 1],
[0, 1, 0, 0, 1],
[0, 0, 1, 1, 1],
[0, 0, 1, 1, 1],
[0, 0, 0, 0, 1]
]
第0行:
h: 1 1 0 0 1
l: 0 0 0 0 4
r: 2 2 5 5 5
第1行:
h: 0 2 0 0 2
l: 0 1 0 0 4
r: 5 2 5 5 5
第2行:
h: 0 0 1 1 3
l: 0 0 2 2 4
r: 5 5 5 5 5
第3行:
h: 0 0 2 2 4
l: 0 0 2 2 4
r: 5 5 5 5 5
第4行:
h: 0 0 0 0 5
l: 0 0 0 0 4
r: 5 5 5 5 5
方法二:
int maximalRectangle(vector<vector<char>>& matrix) {
int row = matrix.size();
if(row <= 0) return 0;
int col = matrix[0].size();
vector<int> left(col),right(col),height(col);
int res = 0;
for(int i = 0; i < col; i++){
left[i] = 0;
right[i] = col;
height[i] = 0;
}
for(int i = 0; i < row; i++){
int cur_left = 0, cur_right = col;
//update height
for(int j = 0; j < col; j++){
if(matrix[i][j] == '1') height[j] += 1;
else height[j] = 0;
}
//update left
for(int j = 0; j < col; j++){
if(matrix[i][j] == '1') {
left[j] = max(left[j],cur_left);
}
else {
left[j] = 0;
cur_left = j+1;
}
}
//update right
for(int j = col-1; j >= 0; j--){
if(matrix[i][j] == '1') {
right[j] = min(right[j],cur_right);
}
else {
right[j] = col;
cur_right = j;
}
}
//update res
for(int j = 0; j < col; j++){
res = max(res,(right[j]-left[j])*height[j]);
}
}
return res;
}