gym 介绍

1. 组成

OpenAI Gym由两部分组成:

  1. gym开源库:测试问题的集合。当你测试强化学习的时候,测试问题就是环境,比如机器人玩游戏,环境的集合就是游戏的画面。这些环境有一个公共的接口,允许用户设计通用的算法。
  2. OpenAI Gym服务:提供一个站点(比如对于游戏cartpole-v0:https://gym.openai.com/envs/CartPole-v0)和api,允许用户对他们的测试结果进行比较。

2. 接口

gym的核心接口是Env,作为统一的环境接口。Env包含下面几个核心函数:

  • reset(self):重置环境的状态,返回观测。
  • step(self, action):物理引擎,向前推进一个时间步长,返回observation,reward,done,info
  • render(self, mode=’human’, close=False):图像引擎,重绘环境的一帧。默认模式一般比较友好,如弹出一个窗口。

3. 注册自己的模拟器

  1. 目标是在注册表中注册自己的环境。假设你在以下结构中定义了自己的环境:
myenv/
    __init__.py
    myenv.py
  1. myenv.py包含适用于我们自己的环境的类。 在init.py中,输入以下代码:
from gym.envs.registration import register
register(
    id='MyEnv-v0',
    entry_point='myenv.myenv:MyEnv', # 第一个myenv是文件夹名字,第二个myenv是文件名字,MyEnv是文件内类的名字
)
  1. 要使用我们自己的环境:
import gym
import myenv # 一定记得导入自己的环境,这是很容易忽略的一点
env = gym.make('MyEnv-v0')
  1. 在PYTHONPATH中安装myenv目录或从父目录启动python。
目录结构:
myenv/
    __init__.py
    my_hotter_colder.py
-------------------
__init__.py 文件:
-------------------
from gym.envs.registration import register
register(
    id='MyHotterColder-v0',
    entry_point='myenv.my_hotter_colder:MyHotterColder',
)
-------------------
my_hotter_colder.py文件:
-------------------
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np

class MyHotterColder(gym.Env):
    """Hotter Colder
    The goal of hotter colder is to guess closer to a randomly selected number

    After each step the agent receives an observation of:
    0 - No guess yet submitted (only after reset)
    1 - Guess is lower than the target
    2 - Guess is equal to the target
    3 - Guess is higher than the target

    The rewards is calculated as:
    (min(action, self.number) + self.range) / (max(action, self.number) + self.range)

    Ideally an agent will be able to recognise the 'scent' of a higher reward and
    increase the rate in which is guesses in that direction until the reward reaches
    its maximum
    """
    def __init__(self):
        self.range = 1000  # +/- value the randomly select number can be between
        self.bounds = 2000  # Action space bounds

        self.action_space = spaces.Box(low=np.array([-self.bounds]), high=np.array([self.bounds]))
        self.observation_space = spaces.Discrete(4)

        self.number = 0
        self.guess_count = 0
        self.guess_max = 200
        self.observation = 0

        self.seed()
        self.reset()

    def seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def step(self, action):
        assert self.action_space.contains(action)

        if action < self.number:
            self.observation = 1

        elif action == self.number:
            self.observation = 2

        elif action > self.number:
            self.observation = 3

        reward = ((min(action, self.number) + self.bounds) / (max(action, self.number) + self.bounds)) ** 2

        self.guess_count += 1
        done = self.guess_count >= self.guess_max

        return self.observation, reward[0], done, {"number": self.number, "guesses": self.guess_count}

    def reset(self):
        self.number = self.np_random.uniform(-self.range, self.range)
        self.guess_count = 0
        self.observation = 0
        return self.observation

参考:

  1. https://github.com/openai/gym/issues/626
  2. https://github.com/openai/gym/tree/master/gym/envs#how-to-create-new-environments-for-gym
  3. https://github.com/openai/gym/blob/522c2c532293399920743265d9bc761ed18eadb3/gym/envs/init.py
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容