由于目前火爆的scrapy爬虫框架还不支持python3.x,原生的python模块urllib.request又稍显复杂,故不得不找替代的库,requests和beautiful soup是一个不错的组合选择~
参考网页(基本是将常用的部分给copy过来了)
Requests中文文档
Beautiful Soup 4.2.0 文档
1. Requests快速上手
1.1 发送请求
尝试获取某个网页。本例子中,我们来获取Github的公共时间线
>>> r = requests.get('https://github.com/timeline.json')
现在,我们有一个名为 r的 Response对象。可以从这个对象中获取所有我们想要的信息。
Requests简便的API意味着所有HTTP请求类型都是显而易见的。例如,你可以这样发送一个HTTP POST请求:
>>> r = requests.post("http://httpbin.org/post")
漂亮,对吧?其他的HTTP请求类型:PUT, DELETE, HEAD以及OPTIONS也是类似的写法,相当的方便。
>>> r = requests.put("http://httpbin.org/put")
>>> r = requests.delete("http://httpbin.org/delete")
>>> r = requests.head("http://httpbin.org/get")
1.2 为URL传递参数
你也许经常想为URL的查询字符串(query string)传递某种数据。如果你是手工构建URL,那么数据会以键/值 对的形式置于URL中,跟在一个问号的后面。例如,httpbin.org/get?key=val 。Requests允许你使用 params关键字参数,以一个字典来提供这些参数。举例来说,如果你想传递 key1=value1 和 key2=value2到 httpbin.org/get,那么你可以使用如下代码:
>>> payload = {'key1': 'value1', 'key2': 'value2'}
>>> r = requests.get("http://httpbin.org/get", params=payload)
通过打印输出该URL,你能看到URL已被正确编码:
>>> print(r.url)http://httpbin.org/get?key2=value2&key1=value1
注意字典里值为 None 的键都不会被添加到 URL 的查询字符串里。
1.3 响应内容
我们能读取服务器响应的内容。再次以Github时间线为例:
>>> import requests
>>> r = requests.get('https://github.com/timeline.json')
>>> r.textu'[{"repository":{"open_issues":0,"url":"https://github.com/...
Requests会自动解码来自服务器的内容。大多数unicode字符集都能被无缝地解码。
请求发出后,Requests会基于HTTP头部对响应的编码作出有根据的推测。当你访问r.text 之时,Requests会使用其推测的文本编码。你可以找出Requests使用了什么编码,并且能够使用 r.encoding属性来改变它:
>>> r.encoding'utf-8'
>>> r.encoding = 'ISO-8859-1'
如果你改变了编码,每当你访问 r.text ,Request都将会使用 r.encoding的新值。你可能希望在使用特殊逻辑计算出文本的编码的情况下来修改编码。比如 HTTP 和 XML 自身可以指定编码。这样的话,你应该用 r.content来找到编码,然后设置 r.encoding为相应的编码。这样就能使用正确的编码解析 r.text了。
在你需要的情况下,Requests也可以使用定制的编码。如果你创建了自己的编码,并使用codecs 模块进行注册,你就可以轻松地使用这个解码器名称作为 r.encoding的值, 然后由Requests来为你处理编码。
二进制响应内容
你也能以字节的方式访问请求响应体,对于非文本请求:
>>> r.content b'[{"repository":{"open_issues":0,"url":"https://github.com/...
Requests会自动为你解码 gzip和 deflate传输编码的响应数据。
例如,以请求返回的二进制数据创建一张图片,你可以使用如下代码:
>>> from PIL import Image
>>> from StringIO import StringIO
>>> i = Image.open(StringIO(r.content))
1.4 定制请求头
有一些网站不喜欢被程序(非人为访问)访问,这时我们就要定制请求头,将自己伪装成浏览器,这就需要我们定制请求头中的User-Agent。想为请求添加HTTP头部,只要简单地传递一个 dict给 headers参数就可以了。例如,在前一个示例中我们没有指定content-type:
>>> import json
>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'}
>>> headers = {'content-type': 'application/json'}
>>> r = requests.post(url, data=json.dumps(payload), headers=headers)
通常,你想要发送一些编码为表单形式的数据—非常像一个HTML表单。 要实现这个,只需简单地传递一个字典给 data参数。你的数据字典 在发出请求时会自动编码为表单形式:
>>> payload = {'key1': 'value1', 'key2': 'value2'}
>>> r = requests.post("http://httpbin.org/post", data=payload)
>>> print r.text{ ... "form": { "key2": "value2", "key1": "value1" }, ...}
很多时候你想要发送的数据并非编码为表单形式的。如果你传递一个 string而不是一个dict,那么数据会被直接发布出去。例如,Github API v3接受编码为JSON的POST/PATCH数据:
>>> import json
>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'}
>>> r = requests.post(url, data=json.dumps(payload))
1.5 响应头与cookies
我们可以查看以一个Python字典形式展示的服务器响应头:
>>> r.headers
{
'content-encoding': 'gzip',
'transfer-encoding': 'chunked',
'connection': 'close',
'server': 'nginx/1.0.4',
'x-runtime': '148ms',
'etag': '"e1ca502697e5c9317743dc078f67693f"',
'content-type': 'application/json'
}
但是这个字典比较特殊:它是仅为HTTP头部而生的。根据 RFC 2616 , HTTP头部是大小写不敏感的。因此,我们可以使用任意大写形式来访问这些响应头字段:
>>> r.headers['Content-Type']
'application/json'
>>> r.headers.get('content-type')
'application/json'
如果某个响应中包含一些Cookie,你可以快速访问它们:
>>> url = 'http://example.com/some/cookie/setting/url'
>>> r = requests.get(url)
>>> r.cookies['example_cookie_name']
'example_cookie_value'
要想发送你的cookies到服务器,可以使用 cookies 参数:
>>> url = 'http://httpbin.org/cookies'
>>> cookies = dict(cookies_are='working')
>>> r = requests.get(url, cookies=cookies)
>>> r.text
'{"cookies": {"cookies_are": "working"}}'
2. Beautiful Soup快速上手
Beautiful Soup是一个用来解析HTML或XML文件,并从中提取数据的Python库。在写爬虫时,利用这个库的函数,能够减小对正则表达式的依赖,也可以与正则表达式一起使用提高搜索的精度。总的来说是一个相当好用的库~
2.1 Beautiful Soup 读取HTML文档
将一段HTML文档传入BeautifulSoup 的构造方法中,就能得到一个文档的对象, 如
import requests
from bs4 import BeautifulSoup
weburl = r"http://www.meizitu.com"
page = requests.get(weburl)
soup = BeautifulSoup(page.text,"html.parser")
2.2 对象的种类
Beautiful Soup将复杂HTML文档转换成一个复杂的树形结构,每个节点都是Python对象,所有对象可以归纳为4种: Tag
,NavigableString
,BeautifulSoup
,Comment
。
Tag
对象与XML或HTML原生文档中的tag
相同,它有两个重要的属性:name
和attributes
。利用name
可以获取HTML原文档tag
的名字。利用attributes
可以获取HTML原文档tag
的属性。
soup = BeautifulSoup('<b class="boldest">Extremely bold</b>')
tag = soup.btype(tag)
# <class 'bs4.element.Tag'>
tag.name
# u'b'
tag['class']
# u'boldest'
tag.attrs
# {u'class': u'boldest'}
2.3 搜索文档树
Beautiful Soup定义了很多搜索方法,最常用的是这2个:find()
和find_all()
。使用find()
可以得到满足要求的第一条文档内容,使用find_all()
则可以获得所有满足要求的文档。find_all()
的返回值是一个列表,可以遍历读取其中的内容。
html_doc = """
<html><head><title>The Dormouse's story</title></head>
<p class="title"><b>The Dormouse's story</b></p>
<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>,
<a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and
<a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;
and they lived at the bottom of a well.</p>
<p class="story">...</p>
"""
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_doc)
通过向find()
和find_all()
传入一个字符串参数,Beautiful Soup会查找与字符串完整匹配的内容,如:
soup.find_all('b')
# [<b>The Dormouse's story</b>]
如果传入正则表达式作为参数,Beautiful Soup会通过正则表达式的match()
来匹配内容。下面例子中找出所有以b开头的标签,这表示<body>
和<b>
标签都应该被找到:
import re
for tag in soup.find_all(re.compile("^b")):
print(tag.name)
# body
# b
如果传入列表参数,Beautiful Soup会将与列表中任一元素匹配的内容返回。下面代码找到文档中所有<a>
标签和<b>
标签:
soup.find_all(["a", "b"])
# [<b>The Dormouse's story</b>,
# <a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>,
# <a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>,
# <a class="sister" href="http://example.com/tillie" id="link3">Tillie</a>]
2.4 find_all()
搜索方法
find_all( name , attrs , recursive , text , **kwargs )
name
参数可以查找所有名字为 name
的tag
,
soup.find_all("title")
# [<title>The Dormouse's story</title>]
soup.find_all("p", "title")
# [<p class="title"><b>The Dormouse's story</b></p>]
如果一个指定名字的参数不是搜索内置的参数名,搜索时会把该参数当作指定名字tag的属性来搜索,如果包含一个名字为 id的参数,Beautiful Soup会搜索每个tag的”id”属性。
soup.find_all(id='link2')
# [<a class="sister" href="http://example.com/lacie" id="link2">Lacie</a>]
如果传入 href参数,Beautiful Soup会搜索每个tag的”href”属性:
soup.find_all(href=re.compile("elsie"))
# [<a class="sister" href="http://example.com/elsie" id="link1">Elsie</a>]
使用多个指定名字的参数可以同时过滤tag的多个属性:
soup.find_all(href=re.compile("elsie"), id='link1')
# [<a class="sister" href="http://example.com/elsie" id="link1">three</a>]
2.5 从文档中找到所有<a>
标签的链接:
for link in soup.find_all('a'):
print(link.get('href'))
# http://example.com/elsie
# http://example.com/lacie
# http://example.com/tillie