Spark与Flink大数据处理引擎对比分析!

大数据技术正飞速地发展着,催生出一代又一代快速便捷的大数据处理引擎,无论是Hadoop、Storm,还是后来的Spark、Flink。然而,毕竟没有哪一个框架可以完全支持所有的应用场景,也就说明不可能有任何一个框架可以完全取代另一个。今天,大圣众包威客平台(www.dashengzb.cn将从几个项出发着重对比Spark与Flink这两个大数据处理引擎,探讨其两者的区别。

一、Spark与Flink几个主要项目的对比与分析

1.性能对比

测试环境:

CPU:7000个

内存:单机128GB

版本:Hadoop 2.3.0,Spark 1.4,Flink 0.9

数据:800MB,8GB,8TB

算法:K-means:以空间中K个点为中心进行聚类,对最靠近它们的对象归类,通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果

迭代:K=10,3组数据

相同点:Spark与Flink都运行在Hadoop YARN上,两者都拥有非常好的计算性能,因为两者都可以基于内存计算框架以进行实时计算。

相异点:结合上图三者的迭代次数(纵坐标是秒,横坐标是次数)图表观察,可得出在性能上,呈现Flink > Spark > Hadoop(MR)的结果,且迭代次数越多越明显。Flink之所以优于Spark和Hadoop,最主要的原因是Flink支持增量迭代,具有对迭代自动优化的功能。

结果:Flink胜。

2.流式计算比较

相同点:Spark与Flink都支持流式计算。

相异点:Spark是基于数据片集合(RDD)进行小批量处理的,它只能支持秒级计算,所以Spark在流式处理方面,不可避免会增加一些延时。Flink是一行一行的,它的流式计算跟Storm的性能差不多,是支持毫秒级计算的。

结果:Flink胜。

3.与Hadoop兼容性对比

相同点:Spark与Flink的数据存取都支持HDFS、HBase等数据源,而且,它们的计算资源调度都支持YARN的方式。

相异点:Spark不支持TableMapper和TableReducer这些方法。Flink对Hadoop有着更好的兼容,如可以支持原生HBase的TableMapper和TableReducer,唯一不足是新版本的MapReduce方法无法得到支持,现在只支持老版本的MapReduce方法。

结果:Flink胜。

4.SQL支持对比

相同点:两者都支持SQL。

相异点:从范围上说,Spark对SQL的支持比Flink的要大一些,而且Spark支持对SQL的优化(包括代码生成和快速Join操作),还要提供对SQL语句的扩展和更好地集成。Flink主要支持对API级的优化。

结果:Spark胜。

5.计算迭代对比

相同点:如下图所示,Hadoop(MR)、Spark和Flink均能迭代。

相异点:Flink特有delta-iterations,这让它能够在迭代中显著减少计算。并且Flink具有自动优化迭代程序功能,具体流程如下图所示。

结果:Flink胜。

6.社区支持对比

相同点:Spark与Flink均有社区支持。

相异点:Spark社区活跃度比Flink高很多。

结果:Spark胜。

二、Spark与Flink的特点剖析

1.Spark 1.4的6大特点

众所周知,提出最主要抽象概念——弹性分布式数据集(RDD)的是Spark。RDD是一个元素集合,将其划分到集群的各个节点上可以被并行操作。当然,用户也可以让Spark保留一个RDD在内存里,让其能在并行操作中被有效地重复使用。Spark是实至名归的快速、通用的计算集群系统。结合下图Spark架构图与生态系统图,可以看出Spark 1.4的6大特点:

①Spark SQL(DataFrame)添加了ORCFile类型支持以及所有的Hive metastore支持;

②增加了UI的Spark Streaming,使得用户查看各种状态更加地便捷,随着和Kafka融合的加深,对Kinesis的支持也加强了很多;

③Spark之所以提供了更多的算法和工具,是因为Spark ML/MLlib的ML pipelines越来越成熟;

④使用了REST API,Spark可以为应用获取如jobs、stages、storage info、tasks等各种信息;

⑤内存管理、代码生成、垃圾回收等方面都有很多改进,这些都得益于Tungsten项目的持续优化;

⑥SparkR的发布让Spark得到更友好的R语法的支持。

2.Flink 0.9的7大特点

作为可扩展的批处理和流式数据处理的数据处理平台,Flink的设计思想主要来源于Hadoop、MPP数据库、流式计算系统等。支持增量迭代计算是Flink最大的特点,而且其对于迭代计算和流式计算的支持力度都将会加强。结合下图Flink架构图与生态系统图,可以看出Flink 0.9的7大特点:

①搭载DataSet API,让Flink支持Java、Python和Scala等多种编程语言;

②同样地,搭载DataStream API,让Flink支持Java和Scala;

③Flink ML和Gelly提供机器学习和图处理的多种库;

④Table API能够支持类SQL;

⑤Flink能够支持高效序列化、反序列化;

⑥Flink和Hadoop相互兼容;

⑦Flink拥有自动优化迭代的功能。

放眼未来,无论是Spark还是Flink,两者的发展重点都将是数据科学和平台API化,使其生态系统越来越完善。亦或许,会有更新的大数据处理引擎出现,谁知道呢。

原文地址:http://www.dashengzb.cn/articles/a-330.html

(更多大数据与商业智能领域干货、或电子书,可添加个人微信号(dashenghuaer))

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容