Python 自然语言处理 2.8 练习

Natural Language Processing with Python
Python 自然语言处理
2.8练习


1. ○ Create a variable phrase containing a list of words. Experiment with the operations described in this chapter, including addition, multiplication, indexing, slicing, and sorting.




2. ○ Use the corpus module to explore austen-persuasion.txt . How many word tokens does this book have? How many word types?

>>> import nltk
>>> from nltk.corpus import gutenberg
>>> gutenberg.fileids()
>>> len(gutenberg.words('austen-persuasion.txt'))
98171
>>> len(set(gutenberg.words('austen-persuasion.txt')))
6132
>>> len(set([w.lower() for w in gutenberg.words('austen-persuasion.txt')]))
5835
>>> 
>>> 
>>> persuasion = gutenberg.words('austen-persuasion.txt')
>>> len(persuasion)          #tokens = len(persuasion)
>>> len(set(persuasion))     #types_1 = len(set(persuasion))
>>> len(set([w.lower for w in persuasion]))     #types_2 = len(set([w.lower for w in persuasion]))

tokens:98171
types:6132


3. ○ Use the Brown Corpus reader nltk.corpus.brown.words() or the Web Text Corpus reader nltk.corpus.webtext.words() to access some sample text in two different genres.


4. ○ Read in the texts of the State of the Union addresses, using the state_union corpus reader. Count occurrences of men , women , and people in each document. What has happened to the usage of these words over time?

#
# NLP with Python
#     ch2 2.8 EX2-8_q4
#

import nltk
from nltk.corpus import state_union

state_union.fileids()
cfd = nltk.ConditionalFreqDist((target,fileid[:4])
                                  for fileid in state_union.fileids()
                                  for w in state_union.words(fileid)
                                  for target in ['women','man','people']
                                  if w.lower().startswith(target))
cfd.plot()

5. ○ Investigate the holonym-meronym relations for some nouns. Remember that there are three kinds of holonym-meronym relation, so you need to use member_meronyms() ,part_meronyms() ,substance_meronyms() ,member_holonyms() ,part_holonyms() , and substance_holonyms() .

6. ○ In the discussion of comparative wordlists, we created an object called translate , which you could look up using words in both German and Italian in order to get corresponding words in English. What problem might arise with this approach? Can you suggest a way to avoid this problem?


7.○ According to Strunk and White’s Elements of Style, the word however, used at the start of a sentence, means “in whatever way” or “to whatever extent,” and not “nevertheless.” They give this example of correct usage: However you advise him,he will probably do as he thinks best. (http://www.bartleby.com/141/strunk3.html) Use the concordance tool to study actual usage of this word in the various texts wehave been considering. See also the LanguageLog posting “Fossilized prejudices about ‘however’” at http://itre.cis.upenn.edu/~myl/languagelog/archives/001913.html.


8.◑ Define a conditional frequency distribution over the Names Corpus that allowsyou to see which initial letters are more frequent for males versus females (see Figure 2-7).

#
# NLP with Python
#     ch2 2.8 EX2-8_q8
#

import nltk
from nltk.corpus import names

name_types = names.fileids()
# ['male.txt','female.txt']
male_names = names.words('male.txt')
female_names = names.words('female.txt')
# [w for w in male_names if w in female_names]

cfd = nltk.ConditionalFreqDist(
(fileid, name[1])
for fileid in names.fileids()
for name in names.words(fileid)
)

cfd.plot()

9.◑ Pick a pair of texts and study the differences between them, in terms of vocabulary, vocabulary richness, genre, etc. Can you find pairs of words that have quite different meanings across the two texts, such as monstrous in Moby Dick and in Sense and Sensibility?


10.◑ Read the BBC News article: “UK’s Vicky Pollards ‘left behind’” at http://news.bbc.co.uk/1/hi/education/6173441.stm. The article gives the following statistic about teen language: “the top 20 words used, including yeah, no, but and like, account for around a third of all words.” How many word types account for a third of all word tokens, for a variety of text sources? What do you conclude about this statistic? Read more about this on LanguageLog, at http://itre.cis.upenn.edu/~myl/languagelog/archives/003993.html.

stopwords 语料库, 高频词汇


11.◑ Investigate the table of modal distributions and look for other patterns. Try to explain them in terms of your own impressionistic understanding of the different genres. Can you find other closed classes of words that exhibit significant differences across different genres?

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343