五大数据分析模型

在这个数据为王的时代,作为一个产品经理或者增长黑客,数据分析是必修课之一。提到数据分析,肯定要提到数据分析模型,在进行数据分析之前,先搭建数据分析模型,根据模型中的内容,具体细分到不同的数据指标进行细化分析,最终得到想要的分析结果或结论。

一、数据分析模型

要进行一次完整的数据分析,首先要明确数据分析思路,如从那几个方面开展数据分析,各方面都包含什么内容或指标。是分析框架,给出分析工作的宏观框架,根据框架中包含的内容,再运用具体的分析方法进行分析。

数据分析方法论的作用:

理顺分析思路,确保数据分析结构体系化 把问题分解成相关联的部分,并显示他们的关系 为后续数据分析的开展指引方向 确保分析结果的有效性和正确性

二、五大数据分析模型

1.PEST分析模型

政治环境:

包括一个国家的社会制度,执政党性质,政府的方针、政策、法令等。不同的政治环境对行业发展有不同的影响。

关键指标

政治体制,经济体制,财政政策,税收政策,产业政策,投资政策,专利数量,国防开支水平,政府补贴水平,民众对政治的参与度。

经济环境:

宏观和微观两个方面。

宏观:一个国家国民收入,国民生产总值以及变化情况,以通过这些指标反应国民经济发展水平和发展速度。

微观:企业所在地区的消费者收入水平、消费偏好、储蓄情况、就业程度等因素,这些因素决定着企业目前以及未来的市场大小。

关键指标

GDP及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。

社会环境:

包括一个国家或地区的居民受教育程度和文化水平、宗教信仰、风俗习惯、审美观点、价值观等。文化水平营销居民的需求层次,宗教信仰和风俗习惯会禁止或抵制某些活动的进行,价值观会影响居民对组织目标和组织活动存在本身的认可,审美观点则会影响人们对组织活动内容、活动方式以及活动成果的态度。

关键指标

人口规模、性别比例、年龄结构、出生率、死亡率、种族结构、妇女生育率、生活方式、购买习惯、教育状况、城市特点、宗教信仰状况等因素。

技术环境:

企业所处领域直接相关的技术手段发展变化,国家队科技开发的投资和支持重点,该领域技术发展动态和研究开发费用总额,技术转移和技术商品化速度,专利及其保护情况。

关键指标

新技术的发明和进展、折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度、国家重点支持项目、国家投入的研发费用、专利个数、专利保护情况。

2.5W2H分析模型

5W2H分析法主要针对5个W以及2个H提出的7个关键词进行数据指标的选取,根据选取的数据进行分析。

3.逻辑树分析模型

将问题的所有子问题分层罗列,从最高层开始,并逐步向下扩展。

把一个已知问题当作树干,考虑这个问题和哪些问题有关,将相关的问题作为树枝加入到树干,一次类推,就会将问题扩展成一个问题树。

逻辑树能保证解决问题的过程完整性,将工作细化成便于操作的具体任务,确定各部分优先顺序,明确责任到个人。

逻辑树分析法三原则:

要素化:把相同问题总结归纳成要素 框架化:将各个要素组成框架,遵守不重不漏原则 关联化:框架内的各要素保持必要的相互关系,简单而不孤立

4.4P营销理论模型

产品:

能提供给市场,被人们使用和消费并满足人们某种需求的任何东西,包括有形产品、服务、人员、组织、观念和它们的组合。

价格:

购买产品时的价格,包括基本价格、折扣价格、支付期限等。影响价格的主要因素有需求、成本和竞争。

渠道:

产品从生产企业流转到用户手上全过程所经历的各个环节。

促销:

企业通过销售行为的改变来激励用户消费,以短期的行为促进消费的增长,吸引其他品牌用户或导致提钱消费来促进销售增长。

5.用户行为模型

用户行为指用户为获取、使用产品或服务才去的各种行动,首先要认知熟悉,然后试用,再决定是否继续消费使用,最后成为产品或服务的忠实用户。

行为轨迹:认知->熟悉->试用->使用->忠诚

三、总结

五大数据分析模型的应用场景根据数据分析所选取的指标不同也有所区别。

PEST分析模型主要针对宏观市场环境进行分析,从政治、经济、社会以及技术四个维度对产品或服务是否适合进入市场进行数据化的分析,最终得到结论,辅助判断产品或服务是否满足大环境。

5W2H分析模型的应用场景较广,可用于对用户行为进行分析以及产品业务分析。

逻辑树分析模型主要针对已知问题进行分析,通过对已知问题的细化分析,通过分析结论找到问题的最优解决方案。

4P营销理论模型主要用于公司或其中某一个产品线的整体运营情况分析,通过分析结论,辅助决策近期运营计划与方案。

用户行为分析模型应用场景比较单一,完全针对用户的行为进行研究分析

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容