Softmax是用来实现多类分类问题常见的损失函数。但如果类别特别多,softmax的效率就是个问题了。比如在word2vec里,每个词都是一个类别,在这种情况下可能有100万类。那么每次都得预测一个样本在100万类上属于每个类的概率,这个效率是非常低的。
为了解决这个问题,在word2vec里面提出了基于Huffman编码的层次Softmax(HS)。HS的结构还是过于复杂,因此后来又有人提出了基于采样的NCE(其实NCE和Negative Sampling是2个不同的paper提出的东西,形式上有所区别,不过我觉得本质是没有区别的)。因此我们可以把HS或者NCE作为多类分类问题的Loss Layer。
所有的代码目前在https://github.com/xlvector/learning-dl/tree/master/mxnet/nce-loss。
为了体验一下Softmax和NCE的速度差别,我们实现了两个例子 toy_softmax.py 和 toy_nce.py。我们虚构了一个多类分类问题,他的构造方法如下:
def mock_sample(self):
ret = np.zeros(self.feature_size)
rn = set()
while len(rn) < 3:
rn.add(random.randint(0, self.feature_size - 1))
s = 0
for k in rn:
ret[k] = 1.0
s *= self.feature_size
s += k
return ret, s % self.vocab_size
上面feature_size 是输入特征的维度,vocab_size是类别的数目。
toy_softmax.py 用普通的softmax来做多类分类问题,网络结构如下:
def get_net(vocab_size):
data = mx.sym.Variable('data')
label = mx.sym.Variable('label')
pred = mx.sym.FullyConnected(data = data, num_hidden = 100)
pred = mx.sym.FullyConnected(data = pred, num_hidden = vocab_size)
sm = mx.sym.SoftmaxOutput(data = pred, label = label)
return sm
运行速度和类别个数的关系如下
类别数 | 每秒处理的样本数 |
---|---|
100 | 40000 |
1000 | 30000 |
10000 | 10000 |
100000 | 1000 |
可以看到,在类别数从10000提高到100000时,速度直接降为原来的1/10。
在看看toy_nce.py,他的网络结构如下:
def get_net(vocab_size, num_label):
data = mx.sym.Variable('data')
label = mx.sym.Variable('label')
label_weight = mx.sym.Variable('label_weight')
embed_weight = mx.sym.Variable('embed_weight')
pred = mx.sym.FullyConnected(data = data, num_hidden = 100)
return nce_loss(data = pred,
label = label,
label_weight = label_weight,
embed_weight = embed_weight,
vocab_size = vocab_size,
num_hidden = 100,
num_label = num_label)
其中,nce_loss的结构如下:
def nce_loss(data, label, label_weight, embed_weight, vocab_size, num_hidden, num_label):
label_embed = mx.sym.Embedding(data = label, input_dim = vocab_size,
weight = embed_weight,
output_dim = num_hidden, name = 'label_embed')
label_embed = mx.sym.SliceChannel(data = label_embed,
num_outputs = num_label,
squeeze_axis = 1, name = 'label_slice')
label_weight = mx.sym.SliceChannel(data = label_weight,
num_outputs = num_label,
squeeze_axis = 1)
probs = []
for i in range(num_label):
vec = label_embed[i]
vec = vec * data
vec = mx.sym.sum(vec, axis = 1)
sm = mx.sym.LogisticRegressionOutput(data = vec,
label = label_weight[i])
probs.append(sm)
return mx.sym.Group(probs)
NCE的主要思想是,对于每一个样本,除了他自己的label,同时采样出N个其他的label,从而我们只需要计算样本在这N+1个label上的概率,而不用计算样本在所有label上的概率。而样本在每个label上的概率最终用了Logistic的损失函数。再来看看NCE的速度和类别数之间的关系:
类别数 | 每秒处理的样本数 |
---|---|
100 | 30000 |
1000 | 30000 |
10000 | 30000 |
100000 | 20000 |
可以看到NCE的速度相对于类别数并不敏感。
有了NCE Loss后,就可以用mxnet来训练word2vec了。word2vec的其中一个CBOW模型是用一个词周围的N个词去预测这个词,我们可以设计如下的网络结构:
def get_net(vocab_size, num_input, num_label):
data = mx.sym.Variable('data')
label = mx.sym.Variable('label')
label_weight = mx.sym.Variable('label_weight')
embed_weight = mx.sym.Variable('embed_weight')
data_embed = mx.sym.Embedding(data = data, input_dim = vocab_size,
weight = embed_weight,
output_dim = 100, name = 'data_embed')
datavec = mx.sym.SliceChannel(data = data_embed,
num_outputs = num_input,
squeeze_axis = 1, name = 'data_slice')
pred = datavec[0]
for i in range(1, num_input):
pred = pred + datavec[i]
return nce_loss(data = pred,
label = label,
label_weight = label_weight,
embed_weight = embed_weight,
vocab_size = vocab_size,
num_hidden = 100,
num_label = num_label)
如上面的结构,输入是num_input个词语。输出是num_label个词语,其中有1个词语是正样本,剩下是负样本。这里,input的embeding和label的embeding都用了同一个embed矩阵embed_weight。
执行wordvec.py (需要把text8放在./data/下面),就可以看到训练结果。
接着word2vec的思路,可以继续把lstm也用上NCE loss。网络结构如下:
def get_net(vocab_size, seq_len, num_label, num_lstm_layer, num_hidden):
param_cells = []
last_states = []
for i in range(num_lstm_layer):
param_cells.append(LSTMParam(i2h_weight=mx.sym.Variable("l%d_i2h_weight" % i),
i2h_bias=mx.sym.Variable("l%d_i2h_bias" % i),
h2h_weight=mx.sym.Variable("l%d_h2h_weight" % i),
h2h_bias=mx.sym.Variable("l%d_h2h_bias" % i)))
state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i),
h=mx.sym.Variable("l%d_init_h" % i))
last_states.append(state)
data = mx.sym.Variable('data')
label = mx.sym.Variable('label')
label_weight = mx.sym.Variable('label_weight')
embed_weight = mx.sym.Variable('embed_weight')
label_embed_weight = mx.sym.Variable('label_embed_weight')
data_embed = mx.sym.Embedding(data = data, input_dim = vocab_size,
weight = embed_weight,
output_dim = 100, name = 'data_embed')
datavec = mx.sym.SliceChannel(data = data_embed,
num_outputs = seq_len,
squeeze_axis = True, name = 'data_slice')
labelvec = mx.sym.SliceChannel(data = label,
num_outputs = seq_len,
squeeze_axis = True, name = 'label_slice')
labelweightvec = mx.sym.SliceChannel(data = label_weight,
num_outputs = seq_len,
squeeze_axis = True, name = 'label_weight_slice')
probs = []
for seqidx in range(seq_len):
hidden = datavec[seqidx]
for i in range(num_lstm_layer):
next_state = lstm(num_hidden, indata = hidden,
prev_state = last_states[i],
param = param_cells[i],
seqidx = seqidx, layeridx = i)
hidden = next_state.h
last_states[i] = next_state
probs += nce_loss(data = hidden,
label = labelvec[seqidx],
label_weight = labelweightvec[seqidx],
embed_weight = label_embed_weight,
vocab_size = vocab_size,
num_hidden = 100,
num_label = num_label)
return mx.sym.Group(probs)
参考
- Tensorflow 关于nce_loss的实现在 这里