word2vec/lstm on mxnet with NCE loss

Softmax是用来实现多类分类问题常见的损失函数。但如果类别特别多,softmax的效率就是个问题了。比如在word2vec里,每个词都是一个类别,在这种情况下可能有100万类。那么每次都得预测一个样本在100万类上属于每个类的概率,这个效率是非常低的。

为了解决这个问题,在word2vec里面提出了基于Huffman编码的层次Softmax(HS)。HS的结构还是过于复杂,因此后来又有人提出了基于采样的NCE(其实NCE和Negative Sampling是2个不同的paper提出的东西,形式上有所区别,不过我觉得本质是没有区别的)。因此我们可以把HS或者NCE作为多类分类问题的Loss Layer。

所有的代码目前在https://github.com/xlvector/learning-dl/tree/master/mxnet/nce-loss

为了体验一下Softmax和NCE的速度差别,我们实现了两个例子 toy_softmax.py 和 toy_nce.py。我们虚构了一个多类分类问题,他的构造方法如下:

def mock_sample(self):
    ret = np.zeros(self.feature_size)
    rn = set()
    while len(rn) < 3:
        rn.add(random.randint(0, self.feature_size - 1))
    s = 0
    for k in rn:
        ret[k] = 1.0
        s *= self.feature_size
        s += k
    return ret, s % self.vocab_size

上面feature_size 是输入特征的维度,vocab_size是类别的数目。

toy_softmax.py 用普通的softmax来做多类分类问题,网络结构如下:

def get_net(vocab_size):
    data = mx.sym.Variable('data')
    label = mx.sym.Variable('label')
    pred = mx.sym.FullyConnected(data = data, num_hidden = 100)
    pred = mx.sym.FullyConnected(data = pred, num_hidden = vocab_size)
    sm = mx.sym.SoftmaxOutput(data = pred, label = label)
    return sm

运行速度和类别个数的关系如下

类别数 每秒处理的样本数
100 40000
1000 30000
10000 10000
100000 1000

可以看到,在类别数从10000提高到100000时,速度直接降为原来的1/10。

在看看toy_nce.py,他的网络结构如下:

def get_net(vocab_size, num_label):
    data = mx.sym.Variable('data')
    label = mx.sym.Variable('label')
    label_weight = mx.sym.Variable('label_weight')
    embed_weight = mx.sym.Variable('embed_weight')
    pred = mx.sym.FullyConnected(data = data, num_hidden = 100)
    return nce_loss(data = pred,
                    label = label,
                    label_weight = label_weight,
                    embed_weight = embed_weight,
                    vocab_size = vocab_size,
                    num_hidden = 100,
                    num_label = num_label)

其中,nce_loss的结构如下:

def nce_loss(data, label, label_weight, embed_weight, vocab_size, num_hidden, num_label):
    label_embed = mx.sym.Embedding(data = label, input_dim = vocab_size,
                                   weight = embed_weight,
                                   output_dim = num_hidden, name = 'label_embed')
    label_embed = mx.sym.SliceChannel(data = label_embed,
                                      num_outputs = num_label,
                                      squeeze_axis = 1, name = 'label_slice')
    label_weight = mx.sym.SliceChannel(data = label_weight,
                                       num_outputs = num_label,
                                       squeeze_axis = 1)
    probs = []
    for i in range(num_label):
        vec = label_embed[i]
        vec = vec * data
        vec = mx.sym.sum(vec, axis = 1)
        sm = mx.sym.LogisticRegressionOutput(data = vec,
                                             label = label_weight[i])
        probs.append(sm)
    return mx.sym.Group(probs)

NCE的主要思想是,对于每一个样本,除了他自己的label,同时采样出N个其他的label,从而我们只需要计算样本在这N+1个label上的概率,而不用计算样本在所有label上的概率。而样本在每个label上的概率最终用了Logistic的损失函数。再来看看NCE的速度和类别数之间的关系:

类别数 每秒处理的样本数
100 30000
1000 30000
10000 30000
100000 20000

可以看到NCE的速度相对于类别数并不敏感。

有了NCE Loss后,就可以用mxnet来训练word2vec了。word2vec的其中一个CBOW模型是用一个词周围的N个词去预测这个词,我们可以设计如下的网络结构:

def get_net(vocab_size, num_input, num_label):
    data = mx.sym.Variable('data')
    label = mx.sym.Variable('label')
    label_weight = mx.sym.Variable('label_weight')
    embed_weight = mx.sym.Variable('embed_weight')
    data_embed = mx.sym.Embedding(data = data, input_dim = vocab_size,
                                  weight = embed_weight,
                                  output_dim = 100, name = 'data_embed')
    datavec = mx.sym.SliceChannel(data = data_embed,
                                     num_outputs = num_input,
                                     squeeze_axis = 1, name = 'data_slice')
    pred = datavec[0]
    for i in range(1, num_input):
        pred = pred + datavec[i]
    return nce_loss(data = pred,
                    label = label,
                    label_weight = label_weight,
                    embed_weight = embed_weight,
                    vocab_size = vocab_size,
                    num_hidden = 100,
                    num_label = num_label)

如上面的结构,输入是num_input个词语。输出是num_label个词语,其中有1个词语是正样本,剩下是负样本。这里,input的embeding和label的embeding都用了同一个embed矩阵embed_weight。

执行wordvec.py (需要把text8放在./data/下面),就可以看到训练结果。

接着word2vec的思路,可以继续把lstm也用上NCE loss。网络结构如下:

def get_net(vocab_size, seq_len, num_label, num_lstm_layer, num_hidden):
    param_cells = []
    last_states = []
    for i in range(num_lstm_layer):
        param_cells.append(LSTMParam(i2h_weight=mx.sym.Variable("l%d_i2h_weight" % i),
                                     i2h_bias=mx.sym.Variable("l%d_i2h_bias" % i),
                                     h2h_weight=mx.sym.Variable("l%d_h2h_weight" % i),
                                     h2h_bias=mx.sym.Variable("l%d_h2h_bias" % i)))
        state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i),
                          h=mx.sym.Variable("l%d_init_h" % i))
        last_states.append(state)
        
    data = mx.sym.Variable('data')
    label = mx.sym.Variable('label')
    label_weight = mx.sym.Variable('label_weight')
    embed_weight = mx.sym.Variable('embed_weight')
    label_embed_weight = mx.sym.Variable('label_embed_weight')
    data_embed = mx.sym.Embedding(data = data, input_dim = vocab_size,
                                  weight = embed_weight,
                                  output_dim = 100, name = 'data_embed')
    datavec = mx.sym.SliceChannel(data = data_embed,
                                  num_outputs = seq_len,
                                  squeeze_axis = True, name = 'data_slice')
    labelvec = mx.sym.SliceChannel(data = label,
                                   num_outputs = seq_len,
                                   squeeze_axis = True, name = 'label_slice')
    labelweightvec = mx.sym.SliceChannel(data = label_weight,
                                         num_outputs = seq_len,
                                         squeeze_axis = True, name = 'label_weight_slice')
    probs = []
    for seqidx in range(seq_len):
        hidden = datavec[seqidx]
        
        for i in range(num_lstm_layer):
            next_state = lstm(num_hidden, indata = hidden,
                              prev_state = last_states[i],
                              param = param_cells[i],
                              seqidx = seqidx, layeridx = i)
            hidden = next_state.h
            last_states[i] = next_state
            
        probs += nce_loss(data = hidden,
                          label = labelvec[seqidx],
                          label_weight = labelweightvec[seqidx],
                          embed_weight = label_embed_weight,
                          vocab_size = vocab_size,
                          num_hidden = 100,
                          num_label = num_label)
    return mx.sym.Group(probs)

参考

  1. Tensorflow 关于nce_loss的实现在 这里
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,013评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,205评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,370评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,168评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,153评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,954评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,271评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,916评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,382评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,877评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,989评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,624评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,209评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,199评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,418评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,401评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,700评论 2 345

推荐阅读更多精彩内容