上周,谷歌公司突然在网上发布了一条简短但却重大的声明:其 AI Quantum 研究小组已经实现了“量子霸权”。这意味着行业正朝着超强计算机迈出重要一步,也进一步证明利用量子力学规则,确实能够解决当前经典计算机无法处理的复杂难题。
美国宇航局几位参与贡献的研究人员不小心泄了密,他们意外把论文草稿发到了网上。从论文内容看,谷歌非常清楚这样的成功意味着什么,并在论文标题中大胆地使用了“利用可编程超导处理器实现的量子霸权”说法。尽管论文被很快撤下,但其副本早已被其他人归档并在互联网上广泛传播。
“量子霸权”是什么东西?
所谓的quantum supremacy,有人翻译为量子优势也有人翻译为量子霸权,一般指的是量子计算在某一个问题上,可以解决经典计算机不能解决的问题或者是比经典计算机有显著的加速(一般是指数加速)。
原则上,即使是最简单的通用型计算机也能够在无限的时间窗口之内解决任何可计算问题(所谓可计算问题,是指存在一个或者一组可能答案的问题)。因此,“霸权”的标准就可以翻译成计算机能够以怎样的速度与可靠性解决这些问题。
google在多项式时间内实现了对一个随机量子电路的采样,而在已知的经典计算机上需要的时间则非常非常之久,像文中实现的最极端的例子是,对一个53比特20个cycle的电路采样一百万次,在量子计算机上需要200秒,而用目前人类最强的经典的超级计算机同样情况下则需要一万年。亦即在这个问题上,量子实现了对经典的超越。
一般观点认为,量子计算机至少需要 49 个量子比特才能达成“霸权”目标。量子比特拥有一系列与经典计算机比特截然不同的特性。经典比特只能表达“1”或者“0”,计算机每次读取一个比特的当前状态并执行损人和。但由于特殊的量子效应,量子比特的位置、方向及动量等特性无法得到明确的定义,因此量子比特能够同时表示由“1”和“0”组成的叠加状态。这就意味着系统同时处于多种状态当中,也就是量子不确定性。
量子计算机可以利用量子运算符(一种数学转换)对量子比特状态内的所有可能偷走一进行操作,从而同时读取并变更“1”和“0”信息。这种即时处理更多信息并同时对这些信息加以操作的能力,使得量子计算机能够以远超经典计算机的方式执行某些极为复杂的任务。
谷歌做了什么?
在意外公布量子霸权里程碑之前,谷歌已经凭借着庞大的量子计算机规模在这场竞争当中处于领先地位。去年,谷歌方面展示了一款新型73 量子比特计算机,明显强于位列第二的竞争对手IBM 在今年9 月18 日公布的 53 量子比特研究成果。
根据泄露的论文内容来看,谷歌方面使用的是一块 53 量子比特处理器(初始量子比特为 54 个,但其中一个量子比特发生了故障)来执行采样测试任务。首先,经典计算机会生成一系列被称为量子门的量子指令。量子门相当于在经典计算机中作用于 1 和 0 状态的逻辑门。这些门控机制统称为量子电路,它们被发送至量子计算机处,仅对纯零状态的量子比特执行操作,从而生成结果状态的概率分布。(由于量子力学存在不确定性,因此该函数只能得出所有可能值的出现概率。)最后,量子计算机负责以概率分布为基础输出样本。
毫无疑问的是,这是量子计算领域一个里程碑一样的大新闻。