机器学习、优化理论、统计分析、数据挖掘、神经网络、人工智能、模式识别之间的关系

作者:北冥乘海生(清华大学信息与通信工程博士/《计算广告》作者)
原文链接:机器学习、优化理论、统计分析、数据挖掘、神经网络、人工智能、模式识别之间的关系是什么? - 北冥乘海生的回答 - 知乎

简单来说,这几个概念的关系如上图所示。

从机器学习的核心视角来看,优化(optimization)和统计(statistics)是其最最重要得两项支撑技术。当然,在人工智能领域“专家遍地走、大师多如狗”的今天,大家都醉心于“二十一天精通人工智能”这样的目标,并没有多少人讨论这些基础技术的重要性。不过,负责任地说,要想成为机器学习领域真正的专家,对这两项基础从原理到实践的深入掌握,是必不可少的。

至于神经网络,或者以此为基础的深度学习,是机器学习的一个分支方法。这个分支的重要程度如此之高,以至于大家可能把它当成了机器学习的同义词。不过,在数据量不那么充分的领域,非深度学习的模型和方法还是有许多应用场景。总之,这两者的逻辑关系肯定是包含的关系。

人工智能、模式识别和数据挖掘,这三个是应用层面的概念,他们的概念互有交叠,产生背景和发展历史有所不同,但使用的工具又是相通的:人工智能是六十年前达特茅斯会议提出的问题,最初的目标在于让机器解决听、看、理解、思考等人类智能行为问题。人工智能的假想敌——人类,恰恰由于多年的进化,在这些问题上能力非常强,所以人工智能从诞生那一天起就面临着巨大的挑战,三起三落才有所突破。

数据挖掘更多地是解决生产、金融、互联网等领域高维数据的缄默与规律发现,在最近几年人工智能概念的外延被大大拓展以后,这些面向高维数据的问题也被称为“超人工智能”问题。另外一个不同点,人工智能往往倾向于机器决策的“自动化(Automation)”方法论,而数据挖掘最初倾向于辅助人类决策的“洞察(insight)”方法论。不过今天来看,只有机器自动决策才是王道。

模式识别是早年间自动化领域提出的一个应用概念,相当于机器学习中的分类、聚类等概念的具体应用,由于场景适用面较窄,目前多为人工智能这个更宽泛的概念所替代了。

拓展阅读:
机器学习、优化理论、统计分析、数据挖掘、神经网络、人工智能、模式识别之间的关系是什么? - 留德华叫兽的回答 - 知乎

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容