算法练习:整数拆分(动态规划)

一.前言

最近一直在了解动态规划,这是LeetCode上面的一道动规的题。

343. 整数拆分

给定一个正整数 n ,将其拆分为 k正整数 的和( k >= 2 ),并使这些整数的乘积最大化。
返回 你可以获得的最大乘积

示例1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。


二.思路

说到动态规划,我认为最重要的就是确定自己的 dp数组 的含义,其次就是 递推公式 了。

  • 确定 dp[i] 的含义

我们重新浏览一遍题,给定一个正整数 n ,需要将它分成若干个整数,返回最大的乘积。因此我们可以定义 dp[i] 表示每个正整数拆分为若干个正整数所对应的最大乘积,若要确定 dp[i] 的值,我们可以根据 dp[i] 以前的元素进行运算从而得到最大的
dp[i] 的值。

  • 确定 dp[i] 的值

dp[i] 的值是由两种方式来共同确定的。
第一,dp[i] = dp[i - j] * j 其中 i 代表外层循环, j 代表内层循环,j1 开始逐个求出 dp[i] ,最后取最大值。
第二,dp[i] = (i - j) * j,同上,也是取最大值。上面那种方式是将 i 分成了 n(n > 2)。而这种方式是将 i 分成了n(n = 2)

  • 确定递推公式

其实到这里,递推公式大致样式也就出来了:
dp[i] = Math.max(dp[i], Math.max(dp[i - j] * j, (i - j) * j)) ,那么可能会有人问为什么还要比较一次 dp[i] 呢?因为我们内层循环中一周后,会算出很多 dp[i] ,我们只需要保存最大的 dp[i]


三.代码

class Solution {
    public int integerBreak(int n) {
        int[] dp = new int[n + 1];
        //dp[2]对应的值应该是1,而dp[2]之前的元素在此问题中无实际意义,因此无需初始化
        dp[2] = 1;
        for(int i = 3; i <= n; i++){
            for(int j = 1; j <= i - j; j++){
                dp[i] = Math.max(dp[i], Math.max(dp[i - j] * j, j * (i - j)));
            }
        }
        return dp[n];
    }
}

时间复杂度 O(n^2)

  • 题外话
    这道题用动态规划的话时间复杂度似乎有点高,其实这道题可以用数学方法来写的,这里用到一个结论:当整数 n 尽可能地等分为 3时乘积最大。如果感兴趣的同学可以去证明一下。
class Solution {
    public int integerBreak(int n) {
        if(n <= 3) return n - 1;
        int a = n / 3, b = n % 3;
        //当 n 分刚好能分成若干个 3 时
        if(b == 0) return (int)Math.pow(3, a);
        //当 n 尽可能分成 3 时,余出一个 1 
        if(b == 1) return (int)Math.pow(3, a - 1) * 4;
        //当 n 尽可能分成 3 时,余出一个 2
        return (int)Math.pow(3, a) * 2;
    }
}

时间复杂度:O(1)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,761评论 5 460
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,953评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,998评论 0 320
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,248评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,130评论 4 356
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,145评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,550评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,236评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,510评论 1 291
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,601评论 2 310
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,376评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,247评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,613评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,911评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,191评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,532评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,739评论 2 335

推荐阅读更多精彩内容