Redis内置数据结构

String

是redis中最基本的数据类型,一个key对应一个value。

String类型是二进制安全的,意思是 redis 的 string 可以包含任何数据。如数字,字符串,jpg图片或者序列化的对象。

Hash (哈希)

是一个Mapmap,指值本身又是一种键值对结构,如 value={{field1,value1},......fieldN,valueN}}

链表

List 说白了就是链表(redis 使用双端链表实现的 List),是有序的,value可以重复,可以通过下标取出对应的value值,左右两边都能进行插入和删除数据。
Set集合
集合类型也是用来保存多个字符串的元素,但和列表不同的是集合中  1. 不允许有重复的元素,2.集合中的元素是无序的,不能通过索引下标获取元素,3.支持集合间的操作,可以取多个集合取交集、并集、差集。

zset 有序集合

有序集合和集合有着必然的联系,保留了集合不能有重复成员的特性,区别是,有序集合中的元素是可以排序的,它给每个元素设置一个分数,作为排序的依据。

Redis内置数据结构的实现

简单动态字符串

基本定义:

struct sdshdr{
     //记录buf数组中已使用字节的数量
     //等于 SDS 保存字符串的长度
     int len;
     //记录 buf 数组中未使用字节的数量
     int free;
     //字节数组,用于保存字符串
     char buf[];
}

使用该动态字符串的好处:

1.可以用常数的复杂度获取字符串长度  

2.杜绝缓冲区溢出 
相比于C语言进行字符串的拼接时候,没有检查字符串可用空间的大小,可能会造成缓冲区的溢出,但是使用redis简单字符串之后,由于有len的存在,在进行字符串拼接的时候可以先检查剩余空间是否足够,在足够的情况下再进行字符串的处理  

3.减少修改字符串的内存重新分配次数  
由于C语言的字符串在创建的时候没有记录长度,所以每次进行字符串拼接的时候都需要重新分配内存。但是由于len属性和free属性的存在,对于修改字符串SDS实现了空间预分配和惰性空间释放两种策略:  

空间预分配:对字符串进行空间扩展的时候,扩展的内存比实际需要的多,这样可以减少连续执行字符串增长操作所需的内存重分配次数。  

惰性空间释放:对字符串进行缩短操作时,程序不立即使用内存重新分配来回收缩短后多余的字节,而是使用 free 属性将这些字节的数量记录下来,等待后续使用。(当然SDS也提供了相应的API,当我们有需要时,也可以手动释放这些未使用的空间。) 

4.二进制安全  
由于C语言使用简单字符串进行字符的复制,所以在出现空字符的时候认为结尾,不适合存储图片等。 但由于简单动态字符串使用二进制存储数据,并且通过len判断字符串结尾,所以可以存储图片等。  

5.兼容部分C语言字符串  
虽然 SDS 是二进制安全的,但是一样遵从每个字符串都是以空字符串结尾的惯例,这样可以重用 C 语言库<string.h> 中的一部分函数。

链表

链表是一种常用的数据结构,C 语言内部是没有内置这种数据结构的实现,所以Redis自己构建了链表的实现。

typedef  struct listNode{
       //前置节点
       struct listNode *prev;
       //后置节点
       struct listNode *next;
       //节点的值
       void *value;  
}listNode

通过多个 listNode 结构就可以组成链表,这是一个双端链表,Redis还提供了操作链表的数据结构:

typedef struct list{
     //表头节点
     listNode *head;
     //表尾节点
     listNode *tail;
     //链表所包含的节点数量
     unsigned long len;
     //节点值复制函数
     void (*free) (void *ptr);
     //节点值释放函数
     void (*free) (void *ptr);
     //节点值对比函数
     int (*match) (void *ptr,void *key);
}list;

采用双端链表的特性

  ①、双端:链表具有前置节点和后置节点的引用,获取这两个节点时间复杂度都为O(1)。

  ②、无环:表头节点的 prev 指针和表尾节点的 next 指针都指向 NULL,对链表的访问都是以 NULL 结束。  

  ③、带链表长度计数器:通过 len 属性获取链表长度的时间复杂度为 O(1)。

  ④、多态:链表节点使用 void* 指针来保存节点值,可以保存各种不同类型的值。

字典

典又称为符号表或者关联数组、或映射(map),是一种用于保存键值对的抽象数据结构。字典中的每一个键 key 都是唯一的,通过 key 可以对值来进行查找或修改。C 语言中没有内置这种数据结构的实现,所以字典依然是 Redis自己构建的。

Redis 的字典使用哈希表作为底层实现。

typedef struct dictht{
     //哈希表数组
     dictEntry **table;
     //哈希表大小
     unsigned long size;
     //哈希表大小掩码,用于计算索引值
     //总是等于 size-1
     unsigned long sizemask;
     //该哈希表已有节点的数量
     unsigned long used;
 
}dictht  

typedef struct dictEntry{
     //键
     void *key;
     //值
     union{
     //val 属性用来保存值,值可以是一个指针,也可以是uint64_t整数,也可以是int64_t整数
          void *val;
          uint64_tu64;
          int64_ts64;
     }v;
 
     //指向下一个哈希表节点,形成链表
     struct dictEntry *next;
}dictEntry

在采用哈希表的时候,对于哈希表的冲突是通过链地址法解决的

关于hash表的一些设计

1.哈希算法:Redis计算哈希值和索引值方法如下:  
#1、使用字典设置的哈希函数,计算键 key 的哈希值
hash = dict->type->hashFunction(key);
#2、使用哈希表的sizemask属性和第一步得到的哈希值,计算索引值
index = hash & dict->ht[x].sizemask;  

2.解决哈希冲突: 通过链地址法,将hash内容链接在指定槽位的next指针当中

3.扩容和收缩:  当哈希表保存的键值对太多或者太少时,就要通过 rerehash(重新散列)来对哈希表进行相应的扩展或者收缩。具体步骤:

    1)如果执行扩展操作,会基于原哈希表创建一个大小等于 ht[0].used*2n 的哈希表(也就是每次扩展都是根据原哈希表已使用的空间扩大一倍创建另一个哈希表)。相反如果执行的是收缩操作,每次收缩是根据已使用空间缩小一倍创建一个新的哈希表。
    
    2)重新利用上面的哈希算法,计算索引值,然后将键值对放到新的哈希表位置上。
    
    3)所有键值对都迁徙完毕后,释放原哈希表的内存空间。 

4.触发扩容的条件  
     1)服务器目前没有执行 BGSAVE 命令或者 BGREWRITEAOF 命令,并且负载因子大于等于1。

     2)服务器目前正在执行 BGSAVE 命令或者 BGREWRITEAOF 命令,并且负载因子大于等于5。

    ps:负载因子 = 哈希表已保存节点数量 / 哈希表大小。  
    
5.渐近式 rehash  
也就是说扩容和收缩操作不是一次性、集中式完成的,而是分多次、渐进式完成的。如果保存在Redis中的键值对只有几个几十个,那么 rehash 操作可以瞬间完成,但是如果键值对有几百万,几千万甚至几亿,那么要一次性的进行 rehash,势必会造成Redis一段时间内不能进行别的操作。所以Redis采用渐进式 rehash,这样在进行渐进式rehash期间,字典的删除查找更新等操作可能会在两个哈希表上进行,第一个哈希表没有找到,就会去第二个哈希表上进行查找。但是进行 增加操作,一定是在新的哈希表上进行的。

跳跃表

跳跃表(skiplist)是一种有序数据结构,它通过在每个节点中维持多个指向其它节点的指针,从而达到快速访问节点的目的。

基本数据结构

typedef struct zskiplistNode {
     //层
     struct zskiplistLevel{
           //前进指针
           struct zskiplistNode *forward;
           //跨度
           unsigned int span;
     }level[];
 
     //后退指针
     struct zskiplistNode *backward;
     //分值
     double score;
     //成员对象
     robj *obj;
 
} zskiplistNode

//多个跳跃表节点构成一个跳跃表:
typedef struct zskiplist{
     //表头节点和表尾节点
     structz skiplistNode *header, *tail;
     //表中节点的数量
     unsigned long length;
     //表中层数最大的节点的层数
     int level;
 
}zskiplist;

特点

1、由很多层结构组成;(层的确定通过随机数,从1到32中选择一个)

2、每一层都是一个有序的链表,排列顺序为由高层到底层,都包含一个指向表尾方向的节点

3、最底层的链表包含了所有的元素;

4、链表中每个节点都有一个指向之前节点和下一个节点的指针

5.头节点不保存内容

6.跳跃表中的节点按照分值大小排序,分值相同时,按照成员对象大小排序

整数集合

整数集合(intset)是Redis用于保存整数值的集合抽象数据类型,它可以保存类型为int16_t、int32_t 或者int64_t 的整数值,并且保证集合中不会出现重复元素。

数据结构:

typedef struct intset{
     //编码方式
     uint32_t encoding;
     //集合包含的元素数量
     uint32_t length;
     //保存元素的数组
     int8_t contents[];
 
}intset;

整数集合的每个元素都是 contents 数组的一个数据项,它们按照从小到大的顺序排列,并且不包含任何重复项。

length 属性记录了 contents 数组的大小。

需要注意的是虽然 contents 数组声明为 int8_t 类型,但是实际上contents 数组并不保存任何 int8_t 类型的值,其真正类型有 encoding 来决定。

集合元素升级: 
当我们新增的元素类型比原集合元素类型的长度要大时,需要对整数集合进行升级,才能将新元素放入整数集合中。具体步骤:

  1、根据新元素类型,扩展整数集合底层数组的大小,并为新元素分配空间。

  2、将底层数组现有的所有元素都转成与新元素相同类型的元素,并将转换后的元素放到正确的位置,放置过程中,维持整个元素顺序都是有序的。

  3、将新元素添加到整数集合中(保证有序)。

  升级能极大地节省内存。   
  
  
不支持降级

压缩列表

压缩列表(ziplist)是Redis为了节省内存而开发的,是由一系列特殊编码的连续内存块组成的顺序型数据结构,一个压缩列表可以包含任意多个节点(entry),每个节点可以保存一个字节数组或者一个整数值。

压缩列表的原理:压缩列表并不是对数据利用某种算法进行压缩,而是将数据按照一定规则编码在一块连续的内存区域,目的是节省内存。
  
具体数据结构:

image

各节点的结构:

image
①、previous_entry_ength:记录压缩列表前一个字节的长度。previous_entry_ength的长度可能是1个字节或者是5个字节,如果上一个节点的长度小于254,则该节点只需要一个字节就可以表示前一个节点的长度了,如果前一个节点的长度大于等于254,则previous length的第一个字节为254,后面用四个字节表示当前节点前一个节点的长度。利用此原理即当前节点位置减去上一个节点的长度即得到上一个节点的起始位置,压缩列表可以从尾部向头部遍历。这么做很有效地减少了内存的浪费。

②、encoding:节点的encoding保存的是节点的content的内容类型以及长度,encoding类型一共有两种,一种字节数组一种是整数,encoding区域长度为1字节、2字节或者5字节长。

③、content:content区域用于保存节点的内容,节点内容类型和长度由encoding决定。

压缩列表的创建和删除都会导致链表的连锁更新(节点大小调整)

对象

redis在实现了底层数据结构后,没有直接使用。而是使用reids对象系统来进行交互。(字符串对象,列表,hash对象,集合对象,有序集合对象)。 另外,通过对象系统实现了内存回收机制,内存共享机制从而节约内存

对象的底层结构

typedef struct redisObject {
    //类型: 4种
    unsigned type:4
    //编码  
    unsigned ecdoing:4
    //指向底层数据结构的指针
    void *ptr;
}

关于redis类型和编码的关系,见<<redsi设计与实现>>61

两个命令

type:返回的的是数据库值对应的对象类型,有4种类型

OBJECT ENCODING:查看一个数据库值对象的编码
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,830评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,992评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,875评论 0 331
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,837评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,734评论 5 360
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,091评论 1 277
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,550评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,217评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,368评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,298评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,350评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,027评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,623评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,706评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,940评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,349评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,936评论 2 341

推荐阅读更多精彩内容

  • Redis 是一个键值对数据库(key-value DB),数据库的值可以是字符串、集合、列表等多种类型的对象,而...
    吴昂_ff2d阅读 3,042评论 0 5
  • 转载:可能是目前最详细的Redis内存模型及应用解读 Redis是目前最火爆的内存数据库之一,通过在内存中读写数据...
    jwnba24阅读 620评论 0 4
  • 前言 Redis是目前最火爆的内存数据库之一,通过在内存中读写数据,大大提高了读写速度,可以说Redis是实现网站...
    小陈阿飞阅读 801评论 0 1
  • 坚持分享第493天2019年12月20日 今天,再次去看医生,我被告知被病毒侵袭,发展成病毒性感冒了。 以往,每隔...
    快乐一生_87e8阅读 310评论 0 0
  • 日子像慢火熬粥,熬着熬着就有了绵长的滋味,馥郁的浓香,甚至拐了弯的幸运。这个北方小镇的初春和冬天没什么分别,尤其今...
    汉文楚楚阅读 200评论 0 1