把文章当做作业来写才行,不然永远开不了头。
人们对于能源的需求越来越大,电能的储存和转化也成为巨大的需求,需要发展新材料来提高电能转化和储存的效率。多孔材料因为具有高表面积和大的孔体积可以改善储能器件的能量密度,功率密度,寿命和稳定性。这篇文章总结多孔材料的制备和他们应用在太阳能电池,太阳能生产燃料,可逆电池,超级电容器和燃料电池中作为电极(催化剂)材料。最后我们提出了研究发展多孔材料中需要克服的问题。
目前,全球80%的能源消耗都是化石能源,化石能源燃烧产生了大量的二氧化碳,进而引起气候变化和其他严重的环境问题。当今发展低碳经济的重要部分就是寻找可再生能源和环境友好的能源储存系统。人们在这个方面投入巨大的精力,开展了很多研究,也遇到很多挑战,主要的挑战就是开发功能化材料。
多孔材料,或者说介孔材料能够吸收客体分子在他的内外表面,引起很多人的关注。根据IUPAC,微孔是<2nm,介孔大于2nm,小于50nm,大孔大于50nm。
最开始的图中,介绍了几种多孔材料的合成方法,包括,软模板法,硬模板法,复合模板法,无模板法。复合模板就是同时使用软模板和硬模板,形成孔径大小不同的分级多孔材料。无模板法合成介孔材料主要是利用纳米粒子的堆积(砌墙)和网状化学中的诱导(MOF的孔做大)。
太阳能电池
染料敏化太阳能电池
染料敏化太阳能电池中需要结晶度最大化,晶体边界很小的材料作为工作电极,而目前合成了几乎为单晶状态的二氧化钛多孔材料(挥发诱导自组装),既提供了大的表面积和孔容,也形成了晶体的形貌(多孔材料一般为无定型),实现了电池效率的提升(相较于之前不使用多孔结构)。
在对电极中,之前一直使用的是pt,存在昂贵和稀少的缺点,且如果电解质中不含碘离子,效率会不高。制备了分级多孔碳材料可以达到和铂接近的效率,同时其他的多孔结构材料也被制备,效率也很好。相信在不久通过材料的复合可以实现高的电子传导和催化活性。
钙钛矿电池
钙钛矿结构做了两个工作,光吸收和空穴传导,效率很高,结构如下图,在其中使用二氧化钛多孔结构可以有稳定的效果,起到的功能主要是抑制磁滞现象,还可以通过在多孔二氧化钛上掺杂锂的元素改善抑制效果。