Flink 源码之作业执行流程

Flink源码分析系列文档目录

请点击:Flink 源码分析系列文档目录

前言

本篇我们从典型Flink用户代码入口开始分析整个Flink作业的执行流程。

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 用户逻辑...
env.execute("XXX Job");

创建ExecutionEnvironment

Flink用户代码执行的第一步通常为获取执行的environment。

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

我们从getExecutionEnvironment方法开始分析。

public static StreamExecutionEnvironment getExecutionEnvironment() {
    return getExecutionEnvironment(new Configuration());
}

public static StreamExecutionEnvironment getExecutionEnvironment(Configuration configuration) {
    return Utils.resolveFactory(threadLocalContextEnvironmentFactory, contextEnvironmentFactory)
        .map(factory -> factory.createExecutionEnvironment(configuration))
        .orElseGet(() -> StreamExecutionEnvironment.createLocalEnvironment(configuration));
}

其中Util.resolveFactory方法接收两个参数,第一个是位于ThreadLocal中的factory,另一个是静态Factory。如果Threadlocal中存在一个factory,返回这个factory,否则返回静态factory。

如果从这两个factory中都无法创建出ExecutionEnvironment,则调用StreamExecutionEnvironment.createLocalEnvironment(configuration)方法。会创建出一个LocalStreamEnvironment,意味着使用本地运行模式,所有的任务在同一个JVM中运行。

如果用户使用命令行方式将Flink作业提交到集群,程序会执行如下逻辑:

  • CliFrontend.executeProgram
  • ClientUtils.executeProgram
  • StreamContextEnvironment.setAsContext
  • StreamExecutionEnvironment.initializeContextEnvironment

通过这些调用,StreamExecutionEnvironmentFactory会被创建出来并设置到StreamExecutionEnvironmentthreadLocalContextEnvironmentFactorycontextEnvironmentFactory中。调用这个factory的createExecutionEnvironment方法创建出一个StreamContextEnvironment对象。这是将作业提交到远程Flink分布式集群的运行环境。

execute方法执行作业

execute方法启动Flink作业,代码如下:

public JobExecutionResult execute() throws Exception {
    // getJobName方法从配置文件pipeline.name配置项获取Job name
    // 如果没有配置,使用默认名称"Flink Streaming Job"
    return execute(getJobName());
}

public JobExecutionResult execute(String jobName) throws Exception {
    Preconditions.checkNotNull(jobName, "Streaming Job name should not be null.");

    return execute(getStreamGraph(jobName));
}

execute作业之前,有一个getStreamGraph方法,将作业转换为StreamGraph。生成StreamGraph的过程参见 Flink 源码之StreamGraph生成

接下来的execute方法的执行步骤随着ExecutionEnvironment的不同而不同。

StreamContextEnvironmentexecute方法:

@Override
public JobExecutionResult execute(StreamGraph streamGraph) throws Exception {
    // 异步执行作业
    final JobClient jobClient = executeAsync(streamGraph);
    // 获取配置的作业监听器
    final List<JobListener> jobListeners = getJobListeners();

    try {
        // 获取作业执行结果,逐个通知作业监听器
        final JobExecutionResult jobExecutionResult = getJobExecutionResult(jobClient);
        jobListeners.forEach(
            jobListener -> jobListener.onJobExecuted(jobExecutionResult, null));
        return jobExecutionResult;
    } catch (Throwable t) {
        jobListeners.forEach(
            jobListener ->
            jobListener.onJobExecuted(
                null, ExceptionUtils.stripExecutionException(t)));
        ExceptionUtils.rethrowException(t);

        // never reached, only make javac happy
        return null;
    }
}

LocalStreamEnvironmentexecute方法:

@Override
public JobExecutionResult execute(StreamGraph streamGraph) throws Exception {
    return super.execute(streamGraph);
}

调用了父类的execute方法。它的父类正是StreamExecutionEnvironment

我们查看下它的execute方法:

@Internal
public JobExecutionResult execute(StreamGraph streamGraph) throws Exception {
    // 异步执行作业
    final JobClient jobClient = executeAsync(streamGraph);

    try {
        final JobExecutionResult jobExecutionResult;

        // 使用attached模式执行作业由于需要保持client端不关闭,所以这里同步等待作业执行结果
        if (configuration.getBoolean(DeploymentOptions.ATTACHED)) {
            jobExecutionResult = jobClient.getJobExecutionResult().get();
        } else {
            // 异步模式则不需要
            jobExecutionResult = new DetachedJobExecutionResult(jobClient.getJobID());
        }

        // 逐个通知jobListener
        jobListeners.forEach(
            jobListener -> jobListener.onJobExecuted(jobExecutionResult, null));

        return jobExecutionResult;
    } catch (Throwable t) {
        // get() on the JobExecutionResult Future will throw an ExecutionException. This
        // behaviour was largely not there in Flink versions before the PipelineExecutor
        // refactoring so we should strip that exception.
        Throwable strippedException = ExceptionUtils.stripExecutionException(t);

        jobListeners.forEach(
            jobListener -> {
                jobListener.onJobExecuted(null, strippedException);
            });
        ExceptionUtils.rethrowException(strippedException);

        // never reached, only make javac happy
        return null;
    }
}

接下来我们分析StreamContextEnvironmentexecuteAsync方法。

@Override
public JobClient executeAsync(StreamGraph streamGraph) throws Exception {
    // 检查一个environment中不能调用多次execute或executeAsync
    validateAllowedExecution();
    // 调用父类的executeAsync方法
    // 和LocalStreamEnvironment中的executeAsync相同
    final JobClient jobClient = super.executeAsync(streamGraph);

    if (!suppressSysout) {
        System.out.println("Job has been submitted with JobID " + jobClient.getJobID());
    }

    return jobClient;
}

最终两个Environment的executeAsync方法归为一致。

下面是StreamExecutionEnvironment类的executeAsync方法:

@Internal
public JobClient executeAsync(StreamGraph streamGraph) throws Exception {
    // 检查streamGraph不能为null
    checkNotNull(streamGraph, "StreamGraph cannot be null.");
    // 检查部署目标配置不能为null
    // 部署目标即作业运行的模式,例如本地模式,远程模式,yarn模式或者是k8s模式
    checkNotNull(
        configuration.get(DeploymentOptions.TARGET),
        "No execution.target specified in your configuration file.");

    // 获取作业执行器
    final PipelineExecutorFactory executorFactory =
        executorServiceLoader.getExecutorFactory(configuration);

    checkNotNull(
        executorFactory,
        "Cannot find compatible factory for specified execution.target (=%s)",
        configuration.get(DeploymentOptions.TARGET));

    // 从执行器工厂获取执行器,运行包含用户作业的streamGraph
    CompletableFuture<JobClient> jobClientFuture =
        executorFactory
        .getExecutor(configuration)
        .execute(streamGraph, configuration, userClassloader);

    try {
        // 通知各个作业监听器作业已提交
        JobClient jobClient = jobClientFuture.get();
        jobListeners.forEach(jobListener -> jobListener.onJobSubmitted(jobClient, null));
        return jobClient;
    } catch (ExecutionException executionException) {
        final Throwable strippedException =
            ExceptionUtils.stripExecutionException(executionException);
        jobListeners.forEach(
            jobListener -> jobListener.onJobSubmitted(null, strippedException));

        throw new FlinkException(
            String.format("Failed to execute job '%s'.", streamGraph.getJobName()),
            strippedException);
    }
}

到这里不同的执行环境具体的逻辑又要开始走向不同。这些逻辑的分叉点在executorServiceLoader.getExecutorFactory(configuration),不同环境下获取到的PipelineExecutorFactory是不同的。在创建LocalStreamEnvironment或者是StreamContextEnvironment的时候executorServiceLoader变量传入的是DefaultExecutorServiceLoader。我们查看它的getExecutorFactory方法。如下所示:

@Override
public PipelineExecutorFactory getExecutorFactory(final Configuration configuration) {
    checkNotNull(configuration);

    // 根据配置文件加载并实例化PipelineExecutorFactory的实现类
    final ServiceLoader<PipelineExecutorFactory> loader =
        ServiceLoader.load(PipelineExecutorFactory.class);

    final List<PipelineExecutorFactory> compatibleFactories = new ArrayList<>();
    final Iterator<PipelineExecutorFactory> factories = loader.iterator();
    while (factories.hasNext()) {
        try {
            final PipelineExecutorFactory factory = factories.next();
            // 遍历所有加载的factory
            // 只保留和配置文件兼容的factory
            if (factory != null && factory.isCompatibleWith(configuration)) {
                compatibleFactories.add(factory);
            }
        } catch (Throwable e) {
            if (e.getCause() instanceof NoClassDefFoundError) {
                LOG.info("Could not load factory due to missing dependencies.");
            } else {
                throw e;
            }
        }
    }

    // 如果兼容的factory有多个,打印错误信息
    if (compatibleFactories.size() > 1) {
        final String configStr =
            configuration.toMap().entrySet().stream()
            .map(e -> e.getKey() + "=" + e.getValue())
            .collect(Collectors.joining("\n"));

        throw new IllegalStateException(
            "Multiple compatible client factories found for:\n" + configStr + ".");
    }

    if (compatibleFactories.isEmpty()) {
        throw new IllegalStateException("No ExecutorFactory found to execute the application.");
    }

    // 返回这个唯一的factory
    return compatibleFactories.get(0);
}

在这个方法中使用了Java SPI机制,根据META-INF/services内的配置文件动态加载并实例化PipelineExecutorFactory的子类。

PipelineExecutorFactory和PipelineExecutor

PipelineExecutorFactory

我们查找下org.apache.flink.core.execution.PipelineExecutorFactory配置文件,发现共有3个,分别位于源码flink-clientsflink-yarnflink-kubernetes子项目中。下面逐个分析。

flink-clients中的org.apache.flink.core.execution.PipelineExecutorFactory内容如下:

org.apache.flink.client.deployment.executors.RemoteExecutorFactory
org.apache.flink.client.deployment.executors.LocalExecutorFactory

也就是说如果我们引入了flink-clients包,会创建RemoteExecutorFactoryLocalExecutorFactory实例。

我们在分别查看下他们的isCompatibleWith方法。

RemoteExecutorFactoryisCompatibleWith方法:

@Override
public boolean isCompatibleWith(final Configuration configuration) {
    return RemoteExecutor.NAME.equalsIgnoreCase(configuration.get(DeploymentOptions.TARGET));
}

要求配置文件中execution.target配置为remote,才会使用RemoteExecutorFactory

LocalExecutorFactoryisCompatibleWith方法:

@Override
public boolean isCompatibleWith(final Configuration configuration) {
    return LocalExecutor.NAME.equalsIgnoreCase(configuration.get(DeploymentOptions.TARGET));
}

要求配置文件中execution.target配置为local,才会使用LocalExecutorFactory

flink-yarn中的org.apache.flink.core.execution.PipelineExecutorFactory内容如下:

org.apache.flink.yarn.executors.YarnJobClusterExecutorFactory
org.apache.flink.yarn.executors.YarnSessionClusterExecutorFactory

和上面类似,这里只说明各个factory兼容的配置项,不再贴出isCompatibleWith方法代码。

  • YarnJobClusterExecutorFactory:要求execution.targetyarn-per-job
  • YarnSessionClusterExecutorFactory:要求execution.targetyarn-session

flink-kubernetes中的org.apache.flink.core.execution.PipelineExecutorFactory内容如下:

org.apache.flink.kubernetes.executors.KubernetesSessionClusterExecutorFactory

其中KubernetesSessionClusterExecutorFactory要求execution.target配置为kubernetes-session

PipelineExecutor

接下来我们重点讨论两个ExecutorLocalExecutorRemoteExecutor。这两个executor创建的逻辑比较简单,此处不再介绍。

PipelineExecutor执行作业的方法为execute。它有3个参数:

  • pipeline:要执行的作业,指的是StreamGraph。
  • configuration:作业的配置。
  • userCodeClassloader:用户作业的类加载器。和Flink本身使用不同类加载器的原因是不同用户作业加载的class可能冲突,用户作业和Flink框架本身加载的class也可能冲突。为了避免这种冲突,用户作业采用不同的类加载器加载。

LocalExecutor

LocalExecutor用于在本地执行任务。它的execute方法如下:

@Override
public CompletableFuture<JobClient> execute(
    Pipeline pipeline, Configuration configuration, ClassLoader userCodeClassloader)
    throws Exception {
    // 参数校验
    checkNotNull(pipeline);
    checkNotNull(configuration);

    Configuration effectiveConfig = new Configuration();
    effectiveConfig.addAll(this.configuration);
    effectiveConfig.addAll(configuration);

    // we only support attached execution with the local executor.
    // 只支持ATTACHED模式运行
    checkState(configuration.getBoolean(DeploymentOptions.ATTACHED));

    // 将StreamGraph转换为JobGraph
    final JobGraph jobGraph = getJobGraph(pipeline, effectiveConfig);

    // 创建一个MiniCluster
    // 并调用MiniCluster的submitJob方法,提交作业
    return PerJobMiniClusterFactory.createWithFactory(effectiveConfig, miniClusterFactory)
        .submitJob(jobGraph, userCodeClassloader);
}

在submit作业之前,需要将StreamGraph转换为JobGraph。详细内容请参见 Flink 源码之JobGraph生成

在方法的最后调用了PerJobMiniClusterFactorysubmitJob方法。PerJobMiniClusterFactory实际操作的是MiniCluster对象。顾名思义,它是一个"小型集群",所有的作业都在本地运行。

PerJobMiniClusterFactorysubmitJob方法代码如下:

public CompletableFuture<JobClient> submitJob(
    JobGraph jobGraph, ClassLoader userCodeClassloader) throws Exception {
    // 获取MiniCluster的配置,指定最大并行度
    MiniClusterConfiguration miniClusterConfig =
        getMiniClusterConfig(jobGraph.getMaximumParallelism());
    // 创建出一个MiniCluster
    MiniCluster miniCluster = miniClusterFactory.apply(miniClusterConfig);
    // 启动miniCluster
    miniCluster.start();

    // 提交作业给miniCluster
    return miniCluster
        .submitJob(jobGraph)
        .thenApplyAsync(
        FunctionUtils.uncheckedFunction(
            submissionResult -> {
                // 执行成功后获取Job执行结果
                org.apache.flink.client.ClientUtils
                    .waitUntilJobInitializationFinished(
                    () ->
                    miniCluster
                    .getJobStatus(
                        submissionResult
                        .getJobID())
                    .get(),
                    () ->
                    miniCluster
                    .requestJobResult(
                        submissionResult
                        .getJobID())
                    .get(),
                    userCodeClassloader);
                return submissionResult;
            }))
        .thenApply(
        result ->
        // 然后关闭MiniCluster
        new MiniClusterJobClient(
            result.getJobID(),
            miniCluster,
            userCodeClassloader,
            MiniClusterJobClient.JobFinalizationBehavior
            .SHUTDOWN_CLUSTER))
        .whenComplete(
        (ignored, throwable) -> {
            if (throwable != null) {
                // We failed to create the JobClient and must shutdown to ensure
                // cleanup.
                shutDownCluster(miniCluster);
            }
        })
        .thenApply(Function.identity());
}

MiniCluster相关内容我们另起一章单独介绍。

RemoteExecutor

remoteExecutorexecute方法位于它的父类AbstractSessionClusterExecutor中。代码和分析如下所示:

@Override
public CompletableFuture<JobClient> execute(
    @Nonnull final Pipeline pipeline,
    @Nonnull final Configuration configuration,
    @Nonnull final ClassLoader userCodeClassloader)
    throws Exception {
    // 和之前相同,仍然是生成JobGraph
    final JobGraph jobGraph = PipelineExecutorUtils.getJobGraph(pipeline, configuration);

    try (final ClusterDescriptor<ClusterID> clusterDescriptor =
         clusterClientFactory.createClusterDescriptor(configuration)) {
        // 获取远程集群ID
        final ClusterID clusterID = clusterClientFactory.getClusterId(configuration);
        checkState(clusterID != null);

        final ClusterClientProvider<ClusterID> clusterClientProvider =
            clusterDescriptor.retrieve(clusterID);
        // 创建出clusterClient,用户和远程集群通信,提交作业
        ClusterClient<ClusterID> clusterClient = clusterClientProvider.getClusterClient();
        return clusterClient
            .submitJob(jobGraph)
            .thenApplyAsync(
            FunctionUtils.uncheckedFunction(
                jobId -> {
                    ClientUtils.waitUntilJobInitializationFinished(
                        () -> clusterClient.getJobStatus(jobId).get(),
                        () -> clusterClient.requestJobResult(jobId).get(),
                        userCodeClassloader);
                    return jobId;
                }))
            .thenApplyAsync(
            jobID ->
            (JobClient)
            new ClusterClientJobClientAdapter<>(
                clusterClientProvider,
                jobID,
                userCodeClassloader))
            .whenComplete((ignored1, ignored2) -> clusterClient.close());
    }
}

ClusterClient根据集群类型的不同,有两个子类:MiniClusterClientRestClusterClient。其中MiniClusterClient用户和MiniCluster通信,它的submitJob方法实际调用的是MiniClustersubmitJob方法。

RestClusterClient通过http rest请求和远程集群通信。它的submitJob方法如下所示:

@Override
public CompletableFuture<JobID> submitJob(@Nonnull JobGraph jobGraph) {
    CompletableFuture<java.nio.file.Path> jobGraphFileFuture =
        CompletableFuture.supplyAsync(
        () -> {
            try {
                // 在系统临时文件目录创建一个空的临时文件
                // 名称为flink-jobgraph.bin
                final java.nio.file.Path jobGraphFile =
                    Files.createTempFile("flink-jobgraph", ".bin");
                // 将JobGraph对象序列化为二进制数据写入这个临时文件
                try (ObjectOutputStream objectOut =
                     new ObjectOutputStream(
                         Files.newOutputStream(jobGraphFile))) {
                    objectOut.writeObject(jobGraph);
                }
                return jobGraphFile;
            } catch (IOException e) {
                throw new CompletionException(
                    new FlinkException("Failed to serialize JobGraph.", e));
            }
        },
        executorService);

    // 在JobGraph写入文件完成之后执行
    CompletableFuture<Tuple2<JobSubmitRequestBody, Collection<FileUpload>>> requestFuture =
        jobGraphFileFuture.thenApply(
        jobGraphFile -> {
            List<String> jarFileNames = new ArrayList<>(8);
            List<JobSubmitRequestBody.DistributedCacheFile> artifactFileNames =
                new ArrayList<>(8);
            Collection<FileUpload> filesToUpload = new ArrayList<>(8);

            // 需要上传的文件加入jobGraphFile
            filesToUpload.add(
                new FileUpload(
                    jobGraphFile, RestConstants.CONTENT_TYPE_BINARY));

            // 从JobGraph中获取用户的jar文件路径,加入到上传列表
            for (Path jar : jobGraph.getUserJars()) {
                jarFileNames.add(jar.getName());
                filesToUpload.add(
                    new FileUpload(
                        Paths.get(jar.toUri()),
                        RestConstants.CONTENT_TYPE_JAR));
            }

            for (Map.Entry<String, DistributedCache.DistributedCacheEntry>
                 artifacts : jobGraph.getUserArtifacts().entrySet()) {
                final Path artifactFilePath =
                    new Path(artifacts.getValue().filePath);
                try {
                    // Only local artifacts need to be uploaded.
                    // 上传用户作业运行所需的其它类型文件
                    // 只需要上传本地储存的文件
                    if (!artifactFilePath.getFileSystem().isDistributedFS()) {
                        artifactFileNames.add(
                            new JobSubmitRequestBody.DistributedCacheFile(
                                artifacts.getKey(),
                                artifactFilePath.getName()));
                        filesToUpload.add(
                            new FileUpload(
                                Paths.get(artifacts.getValue().filePath),
                                RestConstants.CONTENT_TYPE_BINARY));
                    }
                } catch (IOException e) {
                    throw new CompletionException(
                        new FlinkException(
                            "Failed to get the FileSystem of artifact "
                            + artifactFilePath
                            + ".",
                            e));
                }
            }

            // 创建作业提交请求体
            final JobSubmitRequestBody requestBody =
                new JobSubmitRequestBody(
                jobGraphFile.getFileName().toString(),
                jarFileNames,
                artifactFileNames);

            // 返回请求体和需要上传的文件
            return Tuple2.of(
                requestBody, Collections.unmodifiableCollection(filesToUpload));
        });

    // 请求构建完毕后提交请求
    final CompletableFuture<JobSubmitResponseBody> submissionFuture =
        requestFuture.thenCompose(
        requestAndFileUploads ->
        sendRetriableRequest(
            JobSubmitHeaders.getInstance(),
            EmptyMessageParameters.getInstance(),
            requestAndFileUploads.f0,
            requestAndFileUploads.f1,
            isConnectionProblemOrServiceUnavailable()));

    // 请求发送完毕之后,删除JobGraph临时文件
    submissionFuture
        .thenCombine(jobGraphFileFuture, (ignored, jobGraphFile) -> jobGraphFile)
        .thenAccept(
        jobGraphFile -> {
            try {
                Files.delete(jobGraphFile);
            } catch (IOException e) {
                LOG.warn("Could not delete temporary file {}.", jobGraphFile, e);
            }
        });

    return submissionFuture
        .thenApply(ignore -> jobGraph.getJobID())
        .exceptionally(
        (Throwable throwable) -> {
            throw new CompletionException(
                new JobSubmissionException(
                    jobGraph.getJobID(),
                    "Failed to submit JobGraph.",
                    ExceptionUtils.stripCompletionException(throwable)));
        });
}

由于远程集群的JobManagerTaskManager需要单独部署启动,和本篇内容关联不大,此处不再详细描述。

其中TaskManager的启动过程参见 Flink 源码之TaskManager启动流程

MiniCluster

前面已经简单介绍过MiniCluster,它用于在本地环境执行作业。

start方法

启动MiniCluster的逻辑位于start方法中。

public void start() throws Exception {
    synchronized (lock) {
        checkState(!running, "MiniCluster is already running");

        LOG.info("Starting Flink Mini Cluster");
        LOG.debug("Using configuration {}", miniClusterConfiguration);

        final Configuration configuration = miniClusterConfiguration.getConfiguration();
        // MiniCluster中的组件使用同一个共享的RPC服务
        final boolean useSingleRpcService =
            miniClusterConfiguration.getRpcServiceSharing() == RpcServiceSharing.SHARED;

        try {
            // 初始化IO相关配置,是否复写和是否创建output directory等
            initializeIOFormatClasses(configuration);

            LOG.info("Starting Metrics Registry");
            // 创建监控相关配置
            metricRegistry = createMetricRegistry(configuration);

            // bring up all the RPC services
            LOG.info("Starting RPC Service(s)");

            final RpcServiceFactory dispatcherResourceManagerComponentRpcServiceFactory;
            final RpcService metricQueryServiceRpcService;

            // 如果共享一个RPC服务
            if (useSingleRpcService) {
                // we always need the 'commonRpcService' for auxiliary calls
                // 创建本地RPC服务
                commonRpcService = createLocalRpcService(configuration);
                // 创建通用RPC服务工厂
                final CommonRpcServiceFactory commonRpcServiceFactory =
                    new CommonRpcServiceFactory(commonRpcService);
                // TaskManagerRPC服务工厂使用通用RPC服务工厂
                taskManagerRpcServiceFactory = commonRpcServiceFactory;
                dispatcherResourceManagerComponentRpcServiceFactory = commonRpcServiceFactory;
                // 启动RPC查询服务
                metricQueryServiceRpcService =
                    MetricUtils.startLocalMetricsRpcService(configuration);
            } else {

                // start a new service per component, possibly with custom bind addresses
                // 如果不共用RPC服务,获取JobManager和TaskManager地址和端口范围
                final String jobManagerExternalAddress =
                    miniClusterConfiguration.getJobManagerExternalAddress();
                final String taskManagerExternalAddress =
                    miniClusterConfiguration.getTaskManagerExternalAddress();
                final String jobManagerExternalPortRange =
                    miniClusterConfiguration.getJobManagerExternalPortRange();
                final String taskManagerExternalPortRange =
                    miniClusterConfiguration.getTaskManagerExternalPortRange();
                final String jobManagerBindAddress =
                    miniClusterConfiguration.getJobManagerBindAddress();
                final String taskManagerBindAddress =
                    miniClusterConfiguration.getTaskManagerBindAddress();

                // 分别创建各个组件的factory和服务等
                dispatcherResourceManagerComponentRpcServiceFactory =
                    new DedicatedRpcServiceFactory(
                    configuration,
                    jobManagerExternalAddress,
                    jobManagerExternalPortRange,
                    jobManagerBindAddress);
                taskManagerRpcServiceFactory =
                    new DedicatedRpcServiceFactory(
                    configuration,
                    taskManagerExternalAddress,
                    taskManagerExternalPortRange,
                    taskManagerBindAddress);

                // we always need the 'commonRpcService' for auxiliary calls
                // bind to the JobManager address with port 0
                commonRpcService =
                    createRemoteRpcService(configuration, jobManagerBindAddress, 0);
                metricQueryServiceRpcService =
                    MetricUtils.startRemoteMetricsRpcService(
                    configuration, commonRpcService.getAddress());
            }

            // 启动监控查询服务
            metricRegistry.startQueryService(metricQueryServiceRpcService, null);

            // 创建进程监控指标组
            processMetricGroup =
                MetricUtils.instantiateProcessMetricGroup(
                metricRegistry,
                RpcUtils.getHostname(commonRpcService),
                ConfigurationUtils.getSystemResourceMetricsProbingInterval(
                    configuration));

            // 创建IO线程池
            ioExecutor =
                Executors.newFixedThreadPool(
                ClusterEntrypointUtils.getPoolSize(configuration),
                new ExecutorThreadFactory("mini-cluster-io"));
            // 创建高可用服务
            haServices = createHighAvailabilityServices(configuration, ioExecutor);

            // 启动blobServer
            blobServer = new BlobServer(configuration, haServices.createBlobStore());
            blobServer.start();

            // 创建心跳服务
            heartbeatServices = HeartbeatServices.fromConfiguration(configuration);

            // 创建blob缓存服务
            blobCacheService =
                new BlobCacheService(
                configuration,
                haServices.createBlobStore(),
                new InetSocketAddress(
                    InetAddress.getLocalHost(), blobServer.getPort()));

            // 启动TaskManager
            startTaskManagers();

            // 创建监控查询获取服务
            MetricQueryServiceRetriever metricQueryServiceRetriever =
                new RpcMetricQueryServiceRetriever(
                metricRegistry.getMetricQueryServiceRpcService());

            // 创建Dispatcher和ResourceManager,它们在同一个进程中运行
            setupDispatcherResourceManagerComponents(
                configuration,
                dispatcherResourceManagerComponentRpcServiceFactory,
                metricQueryServiceRetriever);

            // 创建ResourceManager leader获取服务
            resourceManagerLeaderRetriever = haServices.getResourceManagerLeaderRetriever();
            dispatcherLeaderRetriever = haServices.getDispatcherLeaderRetriever();
            clusterRestEndpointLeaderRetrievalService =
                haServices.getClusterRestEndpointLeaderRetriever();

            // 创建Dispatcher gateway获取服务
            dispatcherGatewayRetriever =
                new RpcGatewayRetriever<>(
                commonRpcService,
                DispatcherGateway.class,
                DispatcherId::fromUuid,
                new ExponentialBackoffRetryStrategy(
                    21, Duration.ofMillis(5L), Duration.ofMillis(20L)));
            resourceManagerGatewayRetriever =
                new RpcGatewayRetriever<>(
                commonRpcService,
                ResourceManagerGateway.class,
                ResourceManagerId::fromUuid,
                new ExponentialBackoffRetryStrategy(
                    21, Duration.ofMillis(5L), Duration.ofMillis(20L)));
            // 创建WebMonitor leader获取服务
            webMonitorLeaderRetriever = new LeaderRetriever();

            // 分别启动这些服务
            resourceManagerLeaderRetriever.start(resourceManagerGatewayRetriever);
            dispatcherLeaderRetriever.start(dispatcherGatewayRetriever);
            clusterRestEndpointLeaderRetrievalService.start(webMonitorLeaderRetriever);
        } catch (Exception e) {
            // cleanup everything
            try {
                close();
            } catch (Exception ee) {
                e.addSuppressed(ee);
            }
            throw e;
        }

        // create a new termination future
        terminationFuture = new CompletableFuture<>();

        // now officially mark this as running
        running = true;

        LOG.info("Flink Mini Cluster started successfully");
    }
}

通过上面的分析我们熟悉了MiniCluster的启动流程。接下来分析下启动TaskManager的逻辑,位于startTaskManagers方法。

@GuardedBy("lock")
private void startTaskManagers() throws Exception {
    // 获取有几个TaskManager
    final int numTaskManagers = miniClusterConfiguration.getNumTaskManagers();

    LOG.info("Starting {} TaskManger(s)", numTaskManagers);

    // 启动这些TaskManager
    for (int i = 0; i < numTaskManagers; i++) {
        startTaskManager();
    }
}

继续跟踪startTaskManager方法:

public void startTaskManager() throws Exception {
    synchronized (lock) {
        final Configuration configuration = miniClusterConfiguration.getConfiguration();

        // 构建出TaskExecutor
        final TaskExecutor taskExecutor =
            TaskManagerRunner.startTaskManager(
            configuration,
            new ResourceID(UUID.randomUUID().toString()),
            taskManagerRpcServiceFactory.createRpcService(),
            haServices,
            heartbeatServices,
            metricRegistry,
            blobCacheService,
            useLocalCommunication(),
            ExternalResourceInfoProvider.NO_EXTERNAL_RESOURCES,
            taskManagerTerminatingFatalErrorHandlerFactory.create(
                taskManagers.size()));

        // 启动TaskExecutor
        taskExecutor.start();
        taskManagers.add(taskExecutor);
    }
}

到这里TaskManager已经启动完毕。

submitJob方法

public CompletableFuture<JobSubmissionResult> submitJob(JobGraph jobGraph) {
    // 这里创建了3个future:获取DispatcherGateway,获取blob server地址和上传作业到blob server
    final CompletableFuture<DispatcherGateway> dispatcherGatewayFuture =
        getDispatcherGatewayFuture();
    final CompletableFuture<InetSocketAddress> blobServerAddressFuture =
        createBlobServerAddress(dispatcherGatewayFuture);
    final CompletableFuture<Void> jarUploadFuture =
        uploadAndSetJobFiles(blobServerAddressFuture, jobGraph);
    // 等他们都执行完毕后调用Dispatcher的submitJob方法
    final CompletableFuture<Acknowledge> acknowledgeCompletableFuture =
        jarUploadFuture
        .thenCombine(
        dispatcherGatewayFuture,
        (Void ack, DispatcherGateway dispatcherGateway) ->
        dispatcherGateway.submitJob(jobGraph, rpcTimeout))
        .thenCompose(Function.identity());
    return acknowledgeCompletableFuture.thenApply(
        (Acknowledge ignored) -> new JobSubmissionResult(jobGraph.getJobID()));
}

逻辑流转到了DispatchersubmitJob方法。我们在接下来的章节分析。

Dispatcher

Dispatcher负责提交作业和创建出JobManager

Dispatcher有2个子类,MiniDispatcherStandaloneDispatcher。分别用于提交任务给MiniCluster和其他独立的cluster。其中StandaloneDispatcher的实现最为简单,没有override父类Dispatcher的任何方法。

接下来我们分析下MiniDispatchersubmitJob方法。

@Override
public CompletableFuture<Acknowledge> submitJob(JobGraph jobGraph, Time timeout) {
    // 调用Dispatcher的submitJob方法
    final CompletableFuture<Acknowledge> acknowledgeCompletableFuture =
        super.submitJob(jobGraph, timeout);

    acknowledgeCompletableFuture.whenComplete(
        (Acknowledge ignored, Throwable throwable) -> {
            if (throwable != null) {
                onFatalError(
                    new FlinkException(
                        "Failed to submit job "
                        + jobGraph.getJobID()
                        + " in job mode.",
                        throwable));
            }
        });

    return acknowledgeCompletableFuture;
}

继续查看父类DispachersubmitJob方法,如下所示:

@Override
public CompletableFuture<Acknowledge> submitJob(JobGraph jobGraph, Time timeout) {
    log.info("Received JobGraph submission {} ({}).", jobGraph.getJobID(), jobGraph.getName());

    try {
        // 检查作业是否重复
        if (isDuplicateJob(jobGraph.getJobID())) {
            return FutureUtils.completedExceptionally(
                new DuplicateJobSubmissionException(jobGraph.getJobID()));
        // 检查部分资源是否已配置
        } else if (isPartialResourceConfigured(jobGraph)) {
            return FutureUtils.completedExceptionally(
                new JobSubmissionException(
                    jobGraph.getJobID(),
                    "Currently jobs is not supported if parts of the vertices have "
                    + "resources configured. The limitation will be removed in future versions."));
        } else {
            return internalSubmitJob(jobGraph);
        }
    } catch (FlinkException e) {
        return FutureUtils.completedExceptionally(e);
    }
}

接下来流程到了internalSubmitJob方法,代码如下:

private CompletableFuture<Acknowledge> internalSubmitJob(JobGraph jobGraph) {
    log.info("Submitting job {} ({}).", jobGraph.getJobID(), jobGraph.getName());

    // 调用persistAndRunJob方法
    final CompletableFuture<Acknowledge> persistAndRunFuture =
        waitForTerminatingJob(jobGraph.getJobID(), jobGraph, this::persistAndRunJob)
        .thenApply(ignored -> Acknowledge.get());

    return persistAndRunFuture.handleAsync(
        (acknowledge, throwable) -> {
            if (throwable != null) {
                cleanUpJobData(jobGraph.getJobID(), true);

                ClusterEntryPointExceptionUtils.tryEnrichClusterEntryPointError(throwable);
                final Throwable strippedThrowable =
                    ExceptionUtils.stripCompletionException(throwable);
                log.error(
                    "Failed to submit job {}.", jobGraph.getJobID(), strippedThrowable);
                throw new CompletionException(
                    new JobSubmissionException(
                        jobGraph.getJobID(),
                        "Failed to submit job.",
                        strippedThrowable));
            } else {
                return acknowledge;
            }
        },
        ioExecutor);
}

继续跟踪persistAndRunJob方法:

private void persistAndRunJob(JobGraph jobGraph) throws Exception {
    // 存储JobGraph
    jobGraphWriter.putJobGraph(jobGraph);
    // 调用runJob方法
    runJob(jobGraph, ExecutionType.SUBMISSION);
}

分析下runJob方法:

private void runJob(JobGraph jobGraph, ExecutionType executionType) {
    Preconditions.checkState(!runningJobs.containsKey(jobGraph.getJobID()));
    // 记录作业初始化时间戳
    long initializationTimestamp = System.currentTimeMillis();
    // 调用启动JobManager逻辑
    CompletableFuture<JobManagerRunner> jobManagerRunnerFuture =
        createJobManagerRunner(jobGraph, initializationTimestamp);

    DispatcherJob dispatcherJob =
        DispatcherJob.createFor(
        jobManagerRunnerFuture,
        jobGraph.getJobID(),
        jobGraph.getName(),
        initializationTimestamp);
    // 将当前Job存入runningJobs集合
    runningJobs.put(jobGraph.getJobID(), dispatcherJob);

    final JobID jobId = jobGraph.getJobID();

    // 处理Job提交结果,进行cleanup操作
    final CompletableFuture<CleanupJobState> cleanupJobStateFuture =
        dispatcherJob
        .getResultFuture()
        .handleAsync(
        (dispatcherJobResult, throwable) -> {
            Preconditions.checkState(
                runningJobs.get(jobId) == dispatcherJob,
                "The job entry in runningJobs must be bound to the lifetime of the DispatcherJob.");

            if (dispatcherJobResult != null) {
                return handleDispatcherJobResult(
                    jobId, dispatcherJobResult, executionType);
            } else {
                return dispatcherJobFailed(jobId, throwable);
            }
        },
        getMainThreadExecutor());

    // 在cleanup完成之后终止作业
    final CompletableFuture<Void> jobTerminationFuture =
        cleanupJobStateFuture
        .thenApply(cleanupJobState -> removeJob(jobId, cleanupJobState))
        .thenCompose(Function.identity());

    FutureUtils.assertNoException(jobTerminationFuture);
    registerDispatcherJobTerminationFuture(jobId, jobTerminationFuture);
}

这里到了MiniCluster提交作业流程的最后一步,创建JobManagerRunner

createJobManagerRunner方法分析如下:

CompletableFuture<JobManagerRunner> createJobManagerRunner(
    JobGraph jobGraph, long initializationTimestamp) {
    // 获取RPC服务
    final RpcService rpcService = getRpcService();
    return CompletableFuture.supplyAsync(
        () -> {
            try {
                // 创建出一个JobManager启动器
                // 传入JobGraph和其他参数
                JobManagerRunner runner =
                    jobManagerRunnerFactory.createJobManagerRunner(
                    jobGraph,
                    configuration,
                    rpcService,
                    highAvailabilityServices,
                    heartbeatServices,
                    jobManagerSharedServices,
                    new DefaultJobManagerJobMetricGroupFactory(
                        jobManagerMetricGroup),
                    fatalErrorHandler,
                    initializationTimestamp);
                // 启动JobManager启动器
                runner.start();
                return runner;
            } catch (Exception e) {
                throw new CompletionException(
                    new JobInitializationException(
                        jobGraph.getJobID(),
                        "Could not instantiate JobManager.",
                        e));
            }
        },
        ioExecutor); // do not use main thread executor. Otherwise, Dispatcher is blocked on
    // JobManager creation
}

下面章节我们开始分析JobManager启动逻辑。

JobManagerRunner

JobManagerRunnerFactory

接下来我们分析JobManagerRunnerFactory的唯一实现类DefaultJobManagerRunnerFactorycreateJobManagerRunner方法。

@Override
public JobManagerRunner createJobManagerRunner(
    JobGraph jobGraph,
    Configuration configuration,
    RpcService rpcService,
    HighAvailabilityServices highAvailabilityServices,
    HeartbeatServices heartbeatServices,
    JobManagerSharedServices jobManagerServices,
    JobManagerJobMetricGroupFactory jobManagerJobMetricGroupFactory,
    FatalErrorHandler fatalErrorHandler,
    long initializationTimestamp)
    throws Exception {

    // 创建JobManager的配置
    final JobMasterConfiguration jobMasterConfiguration =
        JobMasterConfiguration.fromConfiguration(configuration);

    // 创建SlotPool服务和Scheduler的工厂类
    // 该工厂类用于创建SlotPoolService和SchedulerNG
    final SlotPoolServiceSchedulerFactory slotPoolServiceSchedulerFactory =
        DefaultSlotPoolServiceSchedulerFactory.fromConfiguration(
        configuration, jobGraph.getJobType());

    // 检查是否启用REACTIVE特性
    // 只能够在standalone模式下启用
    // 这个是试验特性
    if (jobMasterConfiguration.getConfiguration().get(JobManagerOptions.SCHEDULER_MODE)
        == SchedulerExecutionMode.REACTIVE) {
        Preconditions.checkState(
            slotPoolServiceSchedulerFactory.getSchedulerType()
            == JobManagerOptions.SchedulerType.Adaptive,
            "Adaptive Scheduler is required for reactive mode");
        ReactiveModeUtils.configureJobGraphForReactiveMode(jobGraph);
    }

    // 创建ShuffleMaster
    // ShuffleMaster负责注册ResultPartition和这个partition的相关信息,包含所在位置,execution id和连接信息
    final ShuffleMaster<?> shuffleMaster =
        ShuffleServiceLoader.loadShuffleServiceFactory(configuration)
        .createShuffleMaster(configuration);

    // 创建JobMaster服务工厂
    // JobMaster服务用于获取JobManaster所在地址,获取和JobMaster通信的Gateway
    final JobMasterServiceFactory jobMasterFactory =
        new DefaultJobMasterServiceFactory(
        jobMasterConfiguration,
        slotPoolServiceSchedulerFactory,
        rpcService,
        highAvailabilityServices,
        jobManagerServices,
        heartbeatServices,
        jobManagerJobMetricGroupFactory,
        fatalErrorHandler,
        shuffleMaster);

    // 创建JobManagerRunnerImpl
    return new JobManagerRunnerImpl(
        jobGraph,
        jobMasterFactory,
        highAvailabilityServices,
        jobManagerServices
        .getLibraryCacheManager()
        .registerClassLoaderLease(jobGraph.getJobID()),
        jobManagerServices.getScheduledExecutorService(),
        fatalErrorHandler,
        initializationTimestamp);
}

JobManagerRunner

JobManagerRunner用于启动JobManager。JobManagerRunner在创建时需要获取用户代码类加载器,RunningJobsRegistry(用于跟踪job执行状态,等待执行,执行中或者是执行完毕)和leader选举服务。

接下来需要启动JobManager。我们查看下start方法:

@Override
public void start() throws Exception {
    try {
        leaderElectionService.start(this);
    } catch (Exception e) {
        log.error(
            "Could not start the JobManager because the leader election service did not start.",
            e);
        throw new Exception("Could not start the leader election service.", e);
    }
}

start方法就一个任务:启动leader选举服务。启动leader选举过程。leader选举过程详细分析参见Flink 源码之leader选举

一旦有JobManagerRunner实例被授予leader角色,它的grantLeadership方法会被调用。grantLeadershipLeaderContender接口的方法,所有参与leader竞选的角色都必须要实现这个接口。JobManagerRunner自然也不例外。

我们查看grantLeadership方法:

@Override
public void grantLeadership(final UUID leaderSessionID) {
    synchronized (lock) {
        if (shutdown) {
            log.debug(
                "JobManagerRunner cannot be granted leadership because it is already shut down.");
            return;
        }

        leadershipOperation =
            leadershipOperation.thenRun(
            ThrowingRunnable.unchecked(
                () -> {
                    synchronized (lock) {
                        verifyJobSchedulingStatusAndStartJobManager(
                            leaderSessionID);
                    }
                }));

        handleException(leadershipOperation, "Could not start the job manager.");
    }
}

接下来到了校验作业调度和启动JobManager的时候。这部分逻辑位于verifyJobSchedulingStatusAndStartJobManager方法。

@GuardedBy("lock")
private void verifyJobSchedulingStatusAndStartJobManager(UUID leaderSessionId)
    throws FlinkException {
    if (shutdown) {
        log.debug("Ignoring starting JobMaster because JobManagerRunner is already shut down.");
        return;
    }

    // 检查作业调度状态
    final RunningJobsRegistry.JobSchedulingStatus jobSchedulingStatus =
        getJobSchedulingStatus();

    // 如果作业已经执行完毕,调用执行完毕逻辑
    if (jobSchedulingStatus == RunningJobsRegistry.JobSchedulingStatus.DONE) {
        jobAlreadyDone();
    } else {
        // 否则,启动JobMaster
        startJobMaster(leaderSessionId);
    }
}

这么长一路下来,终于到了启动JobMaster的时候。

@GuardedBy("lock")
private void startJobMaster(UUID leaderSessionId) throws FlinkException {
    log.info(
        "JobManager runner for job {} ({}) was granted leadership with session id {}.",
        jobGraph.getName(),
        jobGraph.getJobID(),
        leaderSessionId);

    try {
        // 先设置作业的状态为正在运行
        runningJobsRegistry.setJobRunning(jobGraph.getJobID());
    } catch (IOException e) {
        throw new FlinkException(
            String.format(
                "Failed to set the job %s to running in the running jobs registry.",
                jobGraph.getJobID()),
            e);
    }

    // 然后启动JobMaster服务
    startJobMasterServiceSafely(leaderSessionId);

    if (jobMasterService != null) {
        confirmLeaderSessionIdIfStillLeader(jobMasterService, leaderSessionId);
    }
}

继续跟踪startJobMasterServiceSafely方法,内容如下:

private void startJobMasterServiceSafely(UUID leaderSessionId) {
    checkState(jobMasterService == null, "JobMasterService must be null before being started.");

    try {
        // 创建出JobMasterService
        final JobMasterService newJobMasterService =
            jobMasterServiceFactory.createJobMasterService(
            jobGraph,
            new JobMasterId(leaderSessionId),
            this,
            userCodeClassLoader,
            initializationTimestamp);

        jobMasterService = newJobMasterService;

        jobMasterService
            .getTerminationFuture()
            .whenComplete(
            (unused, throwable) -> {
                if (throwable != null) {
                    synchronized (lock) {
                        // check that we are still running and the JobMasterService
                        // is still valid
                        if (!shutdown && newJobMasterService == jobMasterService) {
                            handleJobManagerRunnerError(throwable);
                        }
                    }
                }
            });
    } catch (Exception e) {
        resultFuture.complete(
            JobManagerRunnerResult.forInitializationFailure(
                new JobInitializationException(
                    jobGraph.getJobID(), "Could not start the JobMaster.", e)));
    }
}

该方法中的重点为jobMasterServiceFactory.createJobMasterServiceJobMasterServiceFactory只有一个实现类DefaultJobMasterServiceFactory。它的createJobMasterService方法如下:

@Override
public JobMaster createJobMasterService(
    JobGraph jobGraph,
    JobMasterId jobMasterId,
    OnCompletionActions jobCompletionActions,
    ClassLoader userCodeClassloader,
    long initializationTimestamp)
    throws Exception {

    // 创建JobMaster对象
    final JobMaster jobMaster =
        new JobMaster(
        rpcService,
        jobMasterId,
        jobMasterConfiguration,
        ResourceID.generate(),
        jobGraph,
        haServices,
        slotPoolServiceSchedulerFactory,
        jobManagerSharedServices,
        heartbeatServices,
        jobManagerJobMetricGroupFactory,
        jobCompletionActions,
        fatalErrorHandler,
        userCodeClassloader,
        shuffleMaster,
        lookup ->
        new JobMasterPartitionTrackerImpl(
            jobGraph.getJobID(), shuffleMaster, lookup),
        new DefaultExecutionDeploymentTracker(),
        DefaultExecutionDeploymentReconciler::new,
        initializationTimestamp);

    // 启动JobMaster
    jobMaster.start();

    return jobMaster;
}

到这里为止,执行过程流转到了JobMaster对象。

JobMaster

JobMaster负责执行一个JobGraph

上面的jobMaster.start()方法通过RPC服务调用JobMasteronStart方法。

@Override
protected void onStart() throws JobMasterException {
    try {
        startJobExecution();
    } catch (Exception e) {
        final JobMasterException jobMasterException =
            new JobMasterException("Could not start the JobMaster.", e);
        handleJobMasterError(jobMasterException);
        throw jobMasterException;
    }
}

startJobExecution方法启动JobMaster服务和开始任务调度:

private void startJobExecution() throws Exception {
    // 检查是否在主线程执行
    validateRunsInMainThread();

    startJobMasterServices();

    log.info(
        "Starting execution of job {} ({}) under job master id {}.",
        jobGraph.getName(),
        jobGraph.getJobID(),
        getFencingToken());

    startScheduling();
}

startJobMasterServices方法创建出TaskManager心跳管理器,启动SlotPoolService和建立起ResourceManager leader的连接(ResourceManager也有leader选举过程)。

private void startJobMasterServices() throws Exception {
    try {
        this.taskManagerHeartbeatManager = createTaskManagerHeartbeatManager(heartbeatServices);
        this.resourceManagerHeartbeatManager =
            createResourceManagerHeartbeatManager(heartbeatServices);

        // start the slot pool make sure the slot pool now accepts messages for this leader
        slotPoolService.start(getFencingToken(), getAddress(), getMainThreadExecutor());

        // job is ready to go, try to establish connection with resource manager
        //   - activate leader retrieval for the resource manager
        //   - on notification of the leader, the connection will be established and
        //     the slot pool will start requesting slots
        resourceManagerLeaderRetriever.start(new ResourceManagerLeaderListener());
    } catch (Exception e) {
        handleStartJobMasterServicesError(e);
    }
}

我们回到上面的startScheduling方法,查看它的代码:

private void startScheduling() {
    schedulerNG.startScheduling();
}

下面章节继续分析SchedulerNG执行逻辑。

SchedulerNG

SchedulerNG为Flink的调度器接口,负责根据JobGraph创建ExecutionGraph然后将作业调度执行。

下面的分析我们已默认的DefaultScheduler为准进行分析。DefaultScheduler的父类为SchedulerBase。它在初始化的时候将JobGraph转换为ExecutionGraph

this.executionGraph =
    createAndRestoreExecutionGraph(
    jobManagerJobMetricGroup,
    completedCheckpointStore,
    checkpointsCleaner,
    checkpointIdCounter,
    checkNotNull(shuffleMaster),
    checkNotNull(partitionTracker),
    checkNotNull(executionDeploymentTracker),
    initializationTimestamp,
    mainThreadExecutor,
    jobStatusListener);

创建ExecutionGraph的详细过程参见 Flink 源码之ExecutionGraph

我们回到开始调度执行的逻辑。SchedulerBasestartScheduling方法调用了startSchedulingInternal

@Override
protected void startSchedulingInternal() {
    log.info(
        "Starting scheduling with scheduling strategy [{}]",
        schedulingStrategy.getClass().getName());
    // 设置ExecutionGraph的JobStatus状态为Running
    transitionToRunning();
    // 执行调度策略的startScheduling方法
    schedulingStrategy.startScheduling();
}

接下来我们查看下SchedulingStrategy唯一的实现类PipelinedRegionSchedulingStrategystartScheduling方法。

@Override
public void startScheduling() {
    final Set<SchedulingPipelinedRegion> sourceRegions =
        IterableUtils.toStream(schedulingTopology.getAllPipelinedRegions())
        .filter(region -> !region.getConsumedResults().iterator().hasNext())
        .collect(Collectors.toSet());
    maybeScheduleRegions(sourceRegions);
}

此方法先创建出sourceRegions集合。获取所有的Pipeline类型的Region。Piplined Region详细描述请参见 Flink 源码之ExecutionGraph。然后过滤掉其中不包含consumed result的region(region从上游region接收的数据称为consumed result,为下游region输出的数据称为produced result),即最后剩下的是pipelined region的源头节点。

接下来轮到maybeScheduleRegions方法。

private void maybeScheduleRegions(final Set<SchedulingPipelinedRegion> regions) {
    final List<SchedulingPipelinedRegion> regionsSorted =
        SchedulingStrategyUtils.sortPipelinedRegionsInTopologicalOrder(
        schedulingTopology, regions);
    for (SchedulingPipelinedRegion region : regionsSorted) {
        maybeScheduleRegion(region);
    }
}

该方法将这些region安装拓扑顺序排序后,逐个调用maybeScheduleRegion方法。

private void maybeScheduleRegion(final SchedulingPipelinedRegion region) {
    // 如果region中有一个consumed result状态不是CONSUMABLE(数据可以被消费),返回
    if (!areRegionInputsAllConsumable(region)) {
        return;
    }

    // 检查region中所有的节点必须为已创建状态
    checkState(
        areRegionVerticesAllInCreatedState(region),
        "BUG: trying to schedule a region which is not in CREATED state");

    // 创建各个Execution节点和部署选项
    final List<ExecutionVertexDeploymentOption> vertexDeploymentOptions =
        SchedulingStrategyUtils.createExecutionVertexDeploymentOptions(
        regionVerticesSorted.get(region), id -> deploymentOption);
    // 开始为执行节点分配资源(slot)和部署
    schedulerOperations.allocateSlotsAndDeploy(vertexDeploymentOptions);
}

SchedulerOperations接口是SchedulingStrategy用于实现调度决策的方法。它拥有一个实现类DefaultScheduler

@Override
public void allocateSlotsAndDeploy(
    final List<ExecutionVertexDeploymentOption> executionVertexDeploymentOptions) {
    // 检查每个ExecutionVertex的状态必须为ExecutionState.CREATED
    validateDeploymentOptions(executionVertexDeploymentOptions);

    // 将ExecutionVertexID提取成key
    final Map<ExecutionVertexID, ExecutionVertexDeploymentOption> deploymentOptionsByVertex =
        groupDeploymentOptionsByVertexId(executionVertexDeploymentOptions);

    // 提取出所有的ExecutionVertexID
    final List<ExecutionVertexID> verticesToDeploy =
        executionVertexDeploymentOptions.stream()
        .map(ExecutionVertexDeploymentOption::getExecutionVertexId)
        .collect(Collectors.toList());

    // 创建每个ExecutionVertex的版本信息,默认值为1L
    final Map<ExecutionVertexID, ExecutionVertexVersion> requiredVersionByVertex =
        executionVertexVersioner.recordVertexModifications(verticesToDeploy);

    // 将每个ExecutionVertex的状态切换为ExecutionState.SCHEDULED
    transitionToScheduled(verticesToDeploy);

    // 为所有vertex分配slot,即执行所需的资源
    final List<SlotExecutionVertexAssignment> slotExecutionVertexAssignments =
        allocateSlots(executionVertexDeploymentOptions);

    // 创建vertex部署相关信息
    // 即ExecutionVertexVersion,ExecutionVertexDeploymentOption和SlotExecutionVertexAssignment的包装类
    final List<DeploymentHandle> deploymentHandles =
        createDeploymentHandles(
        requiredVersionByVertex,
        deploymentOptionsByVertex,
        slotExecutionVertexAssignments);

    // 等待所有节点分配资源和部署完毕
    waitForAllSlotsAndDeploy(deploymentHandles);
}

我们继续跟踪waitForAllSlotsAndDeploy方法:

private void waitForAllSlotsAndDeploy(final List<DeploymentHandle> deploymentHandles) {
    FutureUtils.assertNoException(
        assignAllResources(deploymentHandles).handle(deployAll(deploymentHandles)));
}

assignAllResources方法给所有的vertex分配执行所需的资源,然后执行deployAll部署所有节点。

private BiFunction<Void, Throwable, Void> deployAll(
    final List<DeploymentHandle> deploymentHandles) {
    return (ignored, throwable) -> {
        propagateIfNonNull(throwable);
        for (final DeploymentHandle deploymentHandle : deploymentHandles) {
            final SlotExecutionVertexAssignment slotExecutionVertexAssignment =
                deploymentHandle.getSlotExecutionVertexAssignment();
            final CompletableFuture<LogicalSlot> slotAssigned =
                slotExecutionVertexAssignment.getLogicalSlotFuture();
            // 确保slot分配已经完成
            checkState(slotAssigned.isDone());

            // 在slot分配完成后执行deployOrHandleError方法
            FutureUtils.assertNoException(
                slotAssigned.handle(deployOrHandleError(deploymentHandle)));
        }
        return null;
    };
}

接着查看deployOrHandleError方法,代码如下:

private BiFunction<Object, Throwable, Void> deployOrHandleError(
    final DeploymentHandle deploymentHandle) {
    final ExecutionVertexVersion requiredVertexVersion =
        deploymentHandle.getRequiredVertexVersion();
    final ExecutionVertexID executionVertexId = requiredVertexVersion.getExecutionVertexId();

    return (ignored, throwable) -> {
        // 检查ExecutionVertex的版本是否已经修改
        // 如果已经修改,说明该vertex被其他deployment部署,终止本次部署操作
        if (executionVertexVersioner.isModified(requiredVertexVersion)) {
            log.debug(
                "Refusing to deploy execution vertex {} because this deployment was "
                + "superseded by another deployment",
                executionVertexId);
            return null;
        }

        if (throwable == null) {
            // 部署ExecutionVertex
            deployTaskSafe(executionVertexId);
        } else {
            handleTaskDeploymentFailure(executionVertexId, throwable);
        }
        return null;
    };
}

接着跳转到deployTaskSafe方法:

private void deployTaskSafe(final ExecutionVertexID executionVertexId) {
    try {
        final ExecutionVertex executionVertex = getExecutionVertex(executionVertexId);
        // 在获取ExecutionVertex之后部署节点
        executionVertexOperations.deploy(executionVertex);
    } catch (Throwable e) {
        handleTaskDeploymentFailure(executionVertexId, e);
    }
}

查看下ExecutionVertexOperations的唯一实现类DefaultExecutionVertexOperationsdeploy方法:

@Override
public void deploy(final ExecutionVertex executionVertex) throws JobException {
    executionVertex.deploy();
}

该方法调用了ExecutionVertex的部署方法。

ExecutionVertex

ExecutionVertexdeploy方法内容如下。

public void deploy() throws JobException {
    currentExecution.deploy();
}

其中currentExecutionExecution对象。每次尝试执行ExecutionVertex都会创建出一个Execution对象。currentExecution变量保存了最近一次创建的Execution

Executiondeploy方法内容请见下面说明:

public void deploy() throws JobException {
    assertRunningInJobMasterMainThread();

    final LogicalSlot slot = assignedResource;

    checkNotNull(
        slot,
        "In order to deploy the execution we first have to assign a resource via tryAssignResource.");

    // Check if the TaskManager died in the meantime
    // This only speeds up the response to TaskManagers failing concurrently to deployments.
    // The more general check is the rpcTimeout of the deployment call
    // 资源必须是可用状态
    if (!slot.isAlive()) {
        throw new JobException("Target slot (TaskManager) for deployment is no longer alive.");
    }

    // make sure exactly one deployment call happens from the correct state
    // note: the transition from CREATED to DEPLOYING is for testing purposes only
    ExecutionState previous = this.state;
    // 执行状态从SCHEDULED或CREATED转换成DEPLOYING
    if (previous == SCHEDULED || previous == CREATED) {
        if (!transitionState(previous, DEPLOYING)) {
            // race condition, someone else beat us to the deploying call.
            // this should actually not happen and indicates a race somewhere else
            throw new IllegalStateException(
                "Cannot deploy task: Concurrent deployment call race.");
        }
    } else {
        // vertex may have been cancelled, or it was already scheduled
        throw new IllegalStateException(
            "The vertex must be in CREATED or SCHEDULED state to be deployed. Found state "
            + previous);
    }

    // 检查slot是否分配给了当前这个Execution
    if (this != slot.getPayload()) {
        throw new IllegalStateException(
            String.format(
                "The execution %s has not been assigned to the assigned slot.", this));
    }

    try {

        // race double check, did we fail/cancel and do we need to release the slot?
        // 再次检查状态是否是部署中(DEPLOYING)
        if (this.state != DEPLOYING) {
            slot.releaseSlot(
                new FlinkException(
                    "Actual state of execution "
                    + this
                    + " ("
                    + state
                    + ") does not match expected state DEPLOYING."));
            return;
        }

        LOG.info(
            "Deploying {} (attempt #{}) with attempt id {} to {} with allocation id {}",
            vertex.getTaskNameWithSubtaskIndex(),
            attemptNumber,
            vertex.getCurrentExecutionAttempt().getAttemptId(),
            getAssignedResourceLocation(),
            slot.getAllocationId());

        // 创建Task部署描述符,用来创建Task
        final TaskDeploymentDescriptor deployment =
            TaskDeploymentDescriptorFactory.fromExecutionVertex(vertex, attemptNumber)
            .createDeploymentDescriptor(
            slot.getAllocationId(),
            taskRestore,
            producedPartitions.values());

        // null taskRestore to let it be GC'ed
        taskRestore = null;

        // 获取提供资源的TaskManagerGateway
        // 用来和TaskManager通信
        final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway();

        final ComponentMainThreadExecutor jobMasterMainThreadExecutor =
            vertex.getExecutionGraphAccessor().getJobMasterMainThreadExecutor();

        getVertex().notifyPendingDeployment(this);
        // We run the submission in the future executor so that the serialization of large TDDs
        // does not block
        // the main thread and sync back to the main thread once submission is completed.
        // RPC调用,告诉TaskManager创建一个Task,执行当前Execution
        CompletableFuture.supplyAsync(
            () -> taskManagerGateway.submitTask(deployment, rpcTimeout), executor)
            .thenCompose(Function.identity())
            .whenCompleteAsync(
            (ack, failure) -> {
                if (failure == null) {
                    vertex.notifyCompletedDeployment(this);
                } else {
                    if (failure instanceof TimeoutException) {
                        String taskname =
                            vertex.getTaskNameWithSubtaskIndex()
                            + " ("
                            + attemptId
                            + ')';

                        markFailed(
                            new Exception(
                                "Cannot deploy task "
                                + taskname
                                + " - TaskManager ("
                                + getAssignedResourceLocation()
                                + ") not responding after a rpcTimeout of "
                                + rpcTimeout,
                                failure));
                    } else {
                        markFailed(failure);
                    }
                }
            },
            jobMasterMainThreadExecutor);

    } catch (Throwable t) {
        markFailed(t);
    }
}

最后,我们经历了种种曲折又复杂的过程,终于到了TaskManager执行task这一步。Task的创建和执行作者打算单独开篇来讲解。到此为止,Flink作业执行流程已分析完毕。

本博客为作者原创,欢迎大家参与讨论和批评指正。如需转载请注明出处。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容