【离散数学】图论(三)欧拉回路 (Euler Cycle)

正文之前

关于欧拉回路,在图论中有一个著名的问题,叫做柯尼斯堡七桥问题(Königsberg Bridge Problem)

本文根据此问题来介绍:

  • 欧拉回路(Euler Cycle)
  • 欧拉路径(Euler Path)

正文

问题简介:

这个问题是基于一个现实生活中的事例:当时东普鲁士科尼斯堡(今日俄罗斯加里宁格勒)市区跨普列戈利亚河两岸,河中心有两个小岛。小岛与河的两岸有七条桥连接。在所有桥都只能走一遍的前提下,如何才能把这个地方所有的桥都走遍?          ——Wikipedia
Wikipedia

简化问题

我们先将上图中的七桥简化为如下所示:

第一眼看见,比划一下,就知道,在所有桥都只能走一遍的前提下,不能把这个地方所有的桥都走遍。
也就是说,如果遍历这个图,必须要重复经过某些边。

开始证明

欧拉在1735年提出,并没有方法能圆满解决这个问题,他更在第二年发表在论文《柯尼斯堡的七桥》中,证明符合条件的走法并不存在,也顺带提出和解决了一笔画问题。          ——Wikipedia

为了纪念欧拉,在一个图G中包含G的所有结点和边的回路称为欧拉回路,包含G的所有结点和边的路径称为欧拉路径

也就是说,如果欧拉路径闭合,就成了欧拉回路

注意回路的概念:从vi到vi的、长度非0的、不存在重复边的路径

所以上文所说的科尼斯堡七桥并不是欧拉回路。

存在欧拉回路(无向图)

前提条件

在图G中存在欧拉回路的前提条件为:

  • 连通图
概念声明

关于一个图中是否存在欧拉回路,需要先说明两个概念:

  • 奇结点(奇顶点):连接该结点的边的数量为奇数
  • 偶结点(偶顶点):连接该结点的边的数量为偶数
证明(欧拉回路)

由于欧拉回路的性质:只能经过每条边一次,所以,对于每一个结点,至少需要有 2n 条边连接该结点(n = 0,1,2,...n),n = 0时,G中只含有一个结点v,则称路径(v)是G的欧拉回路。

也就是说,图G中存在欧拉回路的充要条件是G中每个结点都是偶结点。

设图G存在欧拉回路,则回路的起点和终点是同一结点,含有一条出边和一条入边,所以该结点为偶结点,以此类推,每个结点都连接有2n(n = 0,1,2,...n)
条边。

证明(欧拉路径)

图G中存在欧拉路径的充要条件和G中存在欧拉回路的充要条件有些相似:

  • 图G中奇结点的个数为0或2

若奇结点的个数为0,则图G中存在欧拉回路,欧拉回路也是欧拉路径的一种。

若奇结点的个数为2,如上图中的欧拉路径,就存在两个奇结点,为欧拉路径,接下来证明这一点:

将两个奇结点相连,可知这是欧拉回路 (v1,v2,v3,v4,v5,v6,v3,v1)

将新增的边删去后,可知这是欧拉路径

欧拉路径(v1,v2,v3,v4,v5,v6,v3),起点和终点分别是两个奇结点

关于欧拉回路和欧拉路径的介绍就到此了,谢谢大家!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容