时序数据库 VS 工业实时数据库

近期,有小伙伴一直问Jesse,时序数据库和实时数据库到底有啥区别,一时间,这问题还真是难住了我。为此Jesse特意请教了CnosDB社区发起人胖梁,在技术人士的加持下,本期我们就来聊聊时序数据库和传统工业实时数据库的那些事儿。

本文仅代表个人观点,如有偏颇之处,还请海涵~

1.传统工业实时数据库

在传统工业控制领域,由于其自身的特殊性,有很多对实时数据处理的要求,特别是流程工业中,对各生产环节的监控要求十分严苛,需要通过监测数据实时反应出系统的状态,所以对于实时数据的处理十分看重。因此工业实时数据库应运而生,其主要用于工业过程数据的采集、存储以及查询分析,以实现过程状态的实时监控。

2.传统工业实时数据库与时序数据库的区别

第一,虽然大家都注重高速的写入性能,但能力上有差别。传统工业实时数据库,一般是单节点支持200万以上数据点、5000并发用户数、数据写速度高于100万条记录/秒。而时序数据库方面,1000万是目前的单节点性能瓶颈。他的软件优化方向也是侧重写多于读,其平衡了数据的压缩和读写放大,主要采用列存储的方式,吸收了软件行业中新技术观点。

第二,在场景和生态工具方面,二者也有差别。传统的工业实时数据库,其实是一套从数据采集开始到可视化的解决方案。针对于工业场景的工具包更为丰富,尤其是对上百种工业协议的支持,以及各个工业场景的数据模型,比如OPC接口(OPC是一个标准,用于规定控制系统和数据源的协议)。但时序数据库,其实不仅仅是工业监控场景,在DevOps、IoT、金融等场景下其也有用武之地。

第三,在扩展性方面工业实时数据库也有一些瓶颈。传统的实时数据库多是主备的部署架构,通常要求有较高配置的机器,来追求单机极致的性能;同时,在稳定性方面,会对运行软件的稳定性做极高的要求,完全由高质量的代码来保证运行的稳定。但时序数据库的分布式架构,使得系统能够轻松地进行水平扩展,让数据库不再依赖昂贵的硬件和存储设备,以集群天然的优势来实现高可用,不会出现单点的瓶颈或故障,在普通的 x86 服务器甚至是虚拟机上都可以运行,大大降低了使用成本。

第四,价格差异明显。传统的工业实时数据库解决方案价格都十分昂贵,一般只有大型企业能接受。比如美国OSI公司的 PI ( Plant Information System ) 产品,其每个接口就要6000美元,整套产品需要百万美元。相比之下,时序数据库都是开源免费的,更便于大家上手。第五,时序数据库更适合上云方向。传统的工业实时数据都会使用私有化部署,机器、软件以及后续的服务是一笔十分高昂的开销,还需要配备专业的技术人员进行系统的维护。随着网络和云计算技术的成熟,相关的性能和安全性不断升级,时序数据库多在拥抱云,更符合大趋势。

今天就到这里吧,最近疫情又有反弹,也希望大家保护好自己,身体健康,我们下次再见。

CnosDB简介

CnosDB是一款高性能、高易用性的开源分布式时序数据库,现已正式发布及全部开源。

欢迎关注我们的代码仓库,一键三连🙇🙇🙇:https://github.com/cnosdb/cnosdb

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容