Redis 缓存的使用和优化

1.缓存收益

1.1加速读写

通过缓存加速读写速度

1.2降低后端负载

后端服务器通过前端缓存降低负载:业务端使用Redis降低后端MySQL负载等

2.缓存成本

1.数据不一致:缓存层和数据层有时间窗口不一致,和更新策略有关。
2.代码维护成本:多了一层缓存逻辑
3.运维成本:例如Redis Cluster

3.使用场景

3.1.降低后端负载:

  • 对高消耗的SQL:join结果集/分组统计结果缓存

3.2.加速请求响应:

  • 利用Redis/Memcache优化IO响应

3.3.大量写合并为批量写:

  • 如计数器先Redis累加再批量写DB

4.缓存更新策略

1.LRU/LFU/FIFO算法剔除:例如maxmemory-policy
2.超时剔除:例如expire
3.主动跟新:开发控制声明周期

策略 一致性 维护成本
LRU/LIRS
最差
超时剔除 较差
主动更新

开发建议

  1. 低一致性:最大内存和淘汰策略
    2.高一字型:超时剔除和主动更新结合,最大内存和淘汰策略保底。

5.缓存粒度控制

  • 全部属性:
set user:{id} 'select * from user where id={id}' 
  • 部分重要属性:
set user:{id} 'select  importantColumn1,.. importantColumnM from user where id={id}' 

通用性。缓存全部数据比部分数据更加通用,但从实际经验看,很长时间内应用只需要几个重要的属性。

空间占用。缓存全部数据要比部分数据占用更多的空间,可能存在以下问题:

全部是数据会造成内存的浪费。
全部数据可能每次传输产生的网络流量会比较大,耗时相对较大,在极端情况下会阻塞网络。
全部数据的序列化和反序列化的CPU开销更大。

代码维护。
全部数据的优势更加明显,而部分数据一旦要加新字段需要修改业务代码,而且修改后通常还需要刷新缓存数据。

下表给出缓存全部数据和部分数据在通用性、空间占用、diamante维护上的对比,开发人员酌情选择。

数据类型 通用性 空间占用(内存空间+网络宽带) 代码维护
全部数据 简单
部分数据 较为复杂

缓存粒度问题是一个容易被忽视的问题,如果使用不当,可能会造成很多无用空间的浪费,网络带宽的浪费,代码通用性较差等情况,需要综合数据通用性、空间占用比、代码维护性三点进行取舍。

6.缓存穿透

缓存穿透将导致不存在的数据每次请求都要到存储层去查询,失去了缓存保护后端存储的意义。

缓存穿透问题可能会使后端存储负载加大,由于很多后端存储不具备高并发性,甚至可能造成后端存储宕掉。通常可以在程序中分别统计总调用数、缓存层命中数、存储层命中数,如果发现大量存储层空命中,可能就是出现了缓存穿透问题。

造成缓存穿透的基本原因有两个:
第一,自身业务代码或者数据出现问题
第二,一些恶意攻击、爬虫等造成大量空命中。
解决方式:

1.缓存空对象(设置过期时间、消息队列刷新null值改变的情况)

public Object getObjectInclNullById(Integer id) {
    // 从缓存中获取数据
    Object cacheValue = cache.get(id);
    // 缓存为空
    if (cacheValue != null) {
        // 从数据库中获取
        Object storageValue = storage.get(key);
        // 缓存空对象
        cache.set(key, storageValue);
        // 如果存储数据为空,需要设置一个过期时间(300秒)
        if (storageValue == null) {
            // 必须设置过期时间,否则有被攻击的风险
            cache.expire(key, 60 * 5);
        }
        return storageValue;
    }
    return cacheValue;
}

数据命中不高,数据频繁变化实时性高,代码维护简单,需要过多的缓存空间,会有数据不一致的问题.

2.布隆过滤器拦截

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
 
public class BloomFilterTest {
 
    // 初始化一个能够容纳10000个元素且容错率为0.01布隆过滤器
    private static final BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), 10000, 0.01);
 
    /**
     * 初始化布隆过滤器
     */
    private static void initLegalIdsBloomFilter() {
        // 初始化10000个合法Id并加入到过滤器中
        for (int legalId = 0; legalId < 10000; legalId++) {
            bloomFilter.put(legalId);
        }
    }
 
    /**
     * id是否合法有效,即是否在过滤器中
     *
     * @param id
     * @return
     */
    public static boolean validateIdInBloomFilter(Integer id) {
        return bloomFilter.mightContain(id);
    }
 
    public static void main(String[] args) {
        // 初始化过滤器
        initLegalIdsBloomFilter();
        // 误判个数
        int errorNum=0;
        // 验证从10000个非法id是否有效
        for (int id = 10000; id < 20000; id++) {
            if (validateIdInBloomFilter(id)){
                // 误判数
                errorNum++;
            }
        }
        System.out.println("judge error num is : " + errorNum);
    }
}
/**
 * 防缓存穿透的:布隆过滤器
 *
 * @param id
 * @return
 */
public Object getObjectByBloom(Integer id) {
    // 判断是否为合法id
    if (!bloomFilter.mightContain(id)) {
        // 非法id,则不允许继续查库
        return null;
    } else {
        // 从缓存中获取数据
        Object cacheValue = cache.get(id);
        // 缓存为空
        if (cacheValue == null) {
            // 从数据库中获取
            Object storageValue = storage.get(id);
            // 缓存空对象
            cache.set(id, storageValue);
        }
        return cacheValue;
    }
} 

这种方法适用于数据命中不高、数据相对固定、实时性低(通常是数据集较大)的应用场景,代码维护较为复杂,但是缓存空间占用少。

7.缓存击穿

1、使用互斥锁排队

业界比价普遍的一种做法,即根据key获取value值为空时,锁上,从数据库中load数据后再释放锁。若其它线程获取锁失败,则等待一段时间后重试。这里要注意,分布式环境中要使用分布式锁,单机的话用普通的锁(synchronized、Lock)就够了。

public String getWithLock(String key, Jedis jedis, String lockKey, String uniqueId, long expireTime) {
    // 通过key获取value
    String value = redisService.get(key);
    if (StringUtil.isEmpty(value)) {
        // 分布式锁,详细可以参考https://blog.csdn.net/fanrenxiang/article/details/79803037
        //封装的tryDistributedLock包括setnx和expire两个功能,在低版本的redis中不支持
        try {
            boolean locked = redisService.tryDistributedLock(jedis, lockKey, uniqueId, expireTime);
            if (locked) {
                value = userService.getById(key);
                redisService.set(key, value);
                redisService.del(lockKey);
                return value;
            } else {
                // 其它线程进来了没获取到锁便等待50ms后重试
                Thread.sleep(50);
                getWithLock(key, jedis, lockKey, uniqueId, expireTime);
            }
        } catch (Exception e) {
            log.error("getWithLock exception=" + e);
            return value;
        } finally {
            redisService.releaseDistributedLock(jedis, lockKey, uniqueId);
        }
    }
    return value;
}

2、接口限流与熔断、降级

重要的接口一定要做好限流策略,防止用户恶意刷接口,同时要降级准备,当接口中的某些服务不可用时候,进行熔断,失败快速返回机制。

3、设置热点数据永远不过期。

9.缓存雪崩

缓存雪崩是指缓存中数据大批量到过期时间,而查询数据量巨大,引起数据库压力过大甚至down机。和缓存击穿不同的是, 缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。

  1. 缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
  2. 如果缓存数据库是分布式部署,将热点数据均匀分布在不同搞得缓存数据库中。
  3. 设置热点数据永远不过期。

8.无底洞优化

2010年,facebook的Memcache节点已经达到了3000个,承载着TB级别的缓存数据。但开发和运维人员发现一个问题,为了满足业务要求添加了大量新Memcache节点,但是发现性能不但没有好转反而下降了,当时将这种现象称为缓存的“无底洞”现象。
那么为什么会产生这种现象呢,通常来说添加节点使得Memcache集群性能应该更强了,但事实并非如此。键值数据库由于通常采用哈希函数将key映射到各个节点上,造成key的分布与业务无关,但是由于数据量和访问量的持续增长,造成需要添加大量节点做水平扩容,导致键值分布到更多的节点上,所以无论是Memcache还是Redis的分布式,批量操作通常需要从不同节点上获取,相对于单机批量操作只涉及一次网络操作,分布式批量操作会涉及多次网络时间。
下图展示了在分布式条件下,一次mget操作需要访问多个Redis节点,需要多次网络时间。


image.png

而下图由于所有键值都集中在一个节点上,所以一次批量操作只需要一次网络时间。


image.png

上面已经对批量操作的四中方案进行了介绍,最后通过下表来对四种方案的优缺点、网络IO次数进行一个总结。

方案 优点 缺点 网络IO
串行命令 1.编程简单。2.如果少量keys,性能可以满足要求 大量keys请求延迟严重 O(keys)
串行IO 1.编程简单。2.少量节点,性能满足要求 大量node延迟严重 O(nodes)
并行IO 利用并行特性,延迟取决于最慢的节点 1.编程复杂。2.由于多线程,问题定位可能较难 O(max_slow(nodes))
hash_tag 性能最高 1.业务维护成本较高。2.容易出现数据倾斜 O(1)

作者:linuxzw

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容