2019-09-26 DAY-4、5 R语言之ggplot 孤傲的小笼包

mpg数据集的内容
1.manufacturer:生产商 15个
2.model:型号 38个
3.displ:引擎排量-L 35个,单位为升,小数
4.year:出厂年份
5.cly:汽缸数 4,5,6,8
6.trans:变速方式:10个
7.drv:驱动方式 f r 4
8.cty :每加仑汽油能跑的公里数(城市)21个,整数
9.hwy:燃油效率:每加仑汽油能跑的公里数(高速路)单位英里/加仑,燃油效率高说明省油。 27个,整数。
10.fl:燃油类型,五个 p r e d c
11.class:车型 七个 compact midsize suv 2seater minivan pickup subcompact

一,基础作图:在ggplot2中,图是采用串联起来( +)号函数创建的。每个函数修改属于自己的部分。

如:ggplot(data = mpg,aes(x = displ, y = hwy)) + geom_point()

image.png

. 调节颜色和大小:

  1. ggplot(data = mpg,aes(x = displ, y = hwy, color = class)) + geom_point()按照七个车型画出不同颜色的点
    image.png
  2. ggplot(data = mpg,aes(x = displ, y = hwy, size = class)) + geom_point()按照七种车型画出不同大小的点
    image.png

    3.透明度和形状:参数alpha = class和shape = class

二,添加分面

1.依据单个变量分面 facet_wrap()

ggplot(data = mpg,aes(x = displ, y = hwy)) + geom_point() + facet_wrap(~ class, nrow = 2)#分两行展示
注意~分面依据必须是离散型变量。

class:车型 七个 compact midsize suv 2seater minivan pickup subcompact

2.依据两个变量分面 facet_grid()

ggplot(data = mpg,aes(x = displ, y = hwy)) + geom_point() + facet_grid(drv ~ cyl)

drv:驱动方式 f r 4;cly:汽缸数 4,5,6,8

3.不想在行或列维度中分面,用.代替变量名

ggplot(data = mpg, aes(x = displ, y = hwy)) + geom_point() + facet_grid(. ~ cyl)
就等于ggplot(data = mpg, aes(x = displ, y = hwy)) + geom_point() + facet_wrap( ~ cyl,nrow = 1)

cly:汽缸数 4,5,6,8

三、分组

将一个图形属性映射为一个离散型变量,ggplot2就会自动对数据进行分组来绘制多个几何对象。这种形式是隐式分组,不需要添加图例和区分特征。

如:将线性映射为drv(驱动方式,d,f,4)就会自动变成三条线型不同的线。

将颜色映射为drv,就会自动变成三条颜色不用的线。
image.png

将颜色映射为drv

四、同一张图显示多个几何对象--局部映射和全局映射

这里涉及到图层啦。

局部映射-映射只对改图层有效

有多个几何对象时,映射语句要重复多次,又丑又麻烦。
(几何对象也就是图的不同类型,如点图、折线图、直方图等)
ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy)) + geom_smooth(mapping = aes(x = displ, y = hwy))
全局映射--对所有图层生效

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) + geom_point() + geom_smooth()
局部映射与全局映射冲突时,服从局部映射。

例如:

library(dplyr)#filter函数出自dplyr包
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) + geom_point(mapping = aes(color = class)) + geom_smooth(data = filter(mpg, class == "subcompact"), se = FALSE)#se是standard error的缩写,se参数为拟合曲线添加标准误差带,也就是那个灰不啦叽的灰色背景带,默认是TRUE。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容