iOS OpenCV 图像识别-模板匹配

一、前言

        OpenCV是一个采用C及C++语言编写的开源机器视觉库,使用范围很广,在此不做过多的介绍,详情可以看一下:OpenCV官网 。在此我们稍微探讨一下OpenCV的模板匹配功能。模板匹配,顾名思义,即给定的一张图片中识别并找出模板图所在的位置。如我需要在下图中定位出照片图标的位置,此时我们就需要用到OpenCV的TemplateMatch功能了。


ScreenShot

二、必要知识点

       在了解功能实现之前先了解一下必要的一些知识点:

cv::Mat 

        作用:数字图像存储时,我们存储的是图像每个像素点的数值,对应的是一个数字矩阵。Mat类由两部分数据组成:矩阵头(包含矩阵尺寸、存储方法、存储地址等)和一个指向存储所有像素值的矩阵(根据所选存储方法的不同,矩阵可以是不同的维数)的指针。Mat在进行赋值和拷贝时,只复制矩阵头,而不复制矩阵,提高效率。如果矩阵属于多个Mat对象,则通过引用计数来判断,当最后一个使用它的对象,则负责释放矩阵。

cv::resize(cv::InputArray src, cv::OutputArray dst, cv::Size dsize)

        作用:该函数的作用是将Mat 类的src 等比缩放,然后存放到Mat类的dst中,缩放比例越小性能越高,但识别度越低。

matchTemplate(InputArray image, InputArray templ, OutputArray result, int method)

        作用:OpenCV 匹配函数

minMaxLoc(const cv::SparseMat &a, double *minVal, double *maxVal)

        作用:整理出本次匹配的最大最小值

cv::Rect

        作用:类似CGRect

UIImageToMat(const UIImage *image, cv::Mat &m)

        需要导入<opencv2/imgcodecs/ios.h>,作用:将UIImage转为矩阵

三、功能实现

        了解以上各函数的作用之后,就可以着手编写代码了。

1、创建模板矩阵(通俗易懂就是我要找的东西,比如下面的相册图标)


模板图片

代码(请原谅我编写该文档的时候没有使用MarkDown格式。。丑陋地贴一下截图。。):


模板设置

2、设置原始图(即屏幕截图)

代码:


设置原始图

3、模板比对

代码:


模板匹配

至此,匹配操作已经完成。

效果:


效果图

四、Demo

        Demo地址为:GitHub

        在构建此Demo前,由于Git 100M的限制,请先下载iOS的OpenCV的SDK,将opencv2.framework文件导入到工程的根目录,下载地址为:opencv2.framework

        如果该文章对您有帮助,Git上求个Star。谢谢各位~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容