机器学习实战之K-Means聚类

俗话说的好:“物以类聚,人以群分”,今天我们要讲的聚类算法很大程度上可以印证此话。聚类是一种非监督学习,什么是非监督学习?与之前学习的分类和回归不同(监督学习),监督学习是有有label标签的,而非监督学习没有。
我们再回到聚类上,聚类是把相似的对象归到同一簇中,有点像全自动分类。聚类的应用场景有很多,例如在电商行业,通过用户的购买历史进行聚类,针对不同的用户群体推送不同的广告。

K-Means聚类算法

算法流程

K-Means聚类首先随机确定 K 个初始点作为质心(这也是K-Means聚类的一个问题,这个K值的不合理选择会使得模型不适应和解释性差)。然后将数据集中的每个点分配到一个簇中, 具体来讲,就是为每个点找到距其最近的质心(这里算的为欧式距离,当然也可以使用其他距离), 并将其分配该质心所对应的簇;这一步完成之后,每个簇的质心更新为该簇所有点的平均值;重复上述过程直到数据集中的所有点都距离它所对应的质心最近时结束。

算法伪代码
创建 k 个点作为起始质心(随机选择)
当任意一个点的簇分配结果发生改变时(不改变时算法结束)
    对数据集中的每个数据点
        对每个质心
            计算质心与数据点之间的距离
        将数据点分配到距其最近的簇
    对每一个簇, 计算簇中所有点的均值并将均值作为质心
实现代码
from numpy import *

def loadDataSet(filename):
    dataMat = []
    fr = open(filename)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = list(map(float,curLine))
        dataMat.append(fltLine)
    return dataMat   

def distEclud(vecA,vecB):
    return sqrt(sum(power(vecA - vecB,2)))

def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n)))
    for j in range(n):
        minJ = min(dataSet[:,j])
        rangeJ = float(max(dataSet[:,j]) - minJ)
        centroids[:, j] = minJ + rangeJ * random.rand(k,1)
    return centroids

def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))
    centroids = createCent(dataSet,k)
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        for i in range(m):
            minDist = inf;minIndex = -1
            for j in range(k):
                distJI = distMeas(centroids[j,:], dataSet[i,:])
                if distJI < minDist:
                    minDist = distJI;minIndex = j
            if clusterAssment[i,0] != minIndex: clusterChanged=True
            clusterAssment[i,:] = minIndex, minDist**2
        print(centroids)
        for cent in range(k):
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
            centroids[cent,:] = mean(ptsInClust,axis=0)
    return centroids, clusterAssment

聚类结果如图:

缺陷

K-Means算法可能偶尔会陷入局部最小值(局部最优的结果,但不是全局最优的结果),如图所示。

出现这个问题有很多原因,可能是k值取的不合适,可能是距离函数不合适,可能是最初随机选取的质心靠的太近,也可能是数据本身分布的问题。

二分K-Means 聚类算法

为了解决K-Means算法的问题,提出了二分 K-Means 聚类算法。该算法首先将所有点作为一个簇,然后将该簇一分为二。之后选择其中一个簇继续进行划分,选择哪一个簇进行划分取决于对其划分时候可以最大程度降低 SSE(平方和误差)的值。上述基于 SSE 的划分过程不断重复,直到得到用户指定的簇数目为止。

代码
def biKmeans(dataSet, k, distMeas=distEclud):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))
    centroid0 = mean(dataSet, axis=0).tolist()[0]
    centList = [centroid0]
    for j in range(m):
        clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:]) ** 2
    while (len(centList) < k):
        lowestSSE = inf
        for i in range(len(centList)):
            ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
            centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
            sseSplit = sum(splitClustAss[:,1])
            sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
            print("sseSplit, and notSplit: ",sseSplit,sseNotSplit)
            if (sseSplit + sseNotSplit) < lowestSSE: 
                bestCentToSplit = i
                bestNewCents = centroidMat
                bestClustAss = splitClustAss.copy()
                lowestSSE = sseSplit + sseNotSplit   
        bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
        bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
        print('the bestCentToSplit is: ',bestCentToSplit)
        print('the len of bestClustAss is: ', len(bestClustAss))
        centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]
        centList.append(bestNewCents[1,:].tolist()[0])
        clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss
    return mat(centList), clusterAssment

结果如图所示:

K-Means算法优缺点

  • 优点:容易实现
  • 缺点:可能陷入局部最优解
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 195,980评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,422评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,130评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,553评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,408评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,326评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,720评论 3 386
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,373评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,678评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,722评论 2 312
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,486评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,335评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,738评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,283评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,692评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,893评论 2 335

推荐阅读更多精彩内容