AI面试第六弹(评价指标)

一、分类问题指标

分类问题的评价指标多是基于以下混淆矩阵
·真实值是positive,模型认为是positive的数量(True Positive=TP)
·真实值是positive,模型认为是negative的数量(False Negative=FN):这就是统计学上的第二类错误(Type II Error)
·真实值是negative,模型认为是positive的数量(False Positive=FP):这就是统计学上的第一类错误(Type I Error)
·真实值是negative,模型认为是negative的数量(True Negative=TN)


混淆矩阵.png

1、准确率(Accuracy):识别对了的正例(TP)与负例(TN)占总识别样本的比例。
2、精确率(Precision):识别对了的正例(TP)占识别出的正例的比例。其中,识别出的正例等于识别对了的正例加上识别错了的正例。
3、召回率(Recall):识别对了的正例(TP)占实际总正例的比例。其中,实际总正例等于识别对了的正例加上识别错了的负例(真正例+伪负例)。
4、F-Score,是召回率R和精度P的加权调和平均,顾名思义即是为了调和召回率R和精度P之间增减反向的矛盾,该综合评价指标F引入了系数α对R和P进行加权调和

F-score.png

5、ROC曲线,也称受试者工作特征。以FPR为横轴,TPR为纵轴,绘制得到的曲线就是ROC曲线。ROC曲线下的面积即为AUC。面积越大代表模型的分类性能越好。
ROC曲线.png

6、AUC:随机挑选一个正样本以及负样本,算法将正样本排在负样本前面的概率就是AUC值。 M为正类样本的数目,N为负类样本的数目。

AUC计算公式.png

特点:AUC的评价效果不受正负样本比例的影响。因为改变正负样本比例,横纵坐标大小同时变化。整体不变。

二、回归问题评价指标:

1、MAE(Mean Absolute Error)是绝对误差的平均值。可以更好地反映预测值误差的实际情况
2、MSE是真实值与预测值的差值的平方然后求和平均。通过平方的形式便于求导,所以常被用作线性回归的损失函数。
3、RMSE(Root Mean Square Error)衡量观测值与真实值之间的偏差。常用来作为机器学习模型预测结果衡量的标准。 受异常点影响较大。

RMSE计算公式.png

4、R-square(决定系数),分母理解为原始数据的离散程度,分子为预测数据和原始数据的误差,二者相除可以消除原始数据离散程度的影响。
R-square计算公式.png

(此处的R即相关系数,相关系数的平方就是决定系数R-Square。其中分母的y_mean是y_actual的mean。)
分子是残差的平方之和;分母是总方差;把“1减”揉进分式后,变成了“(总方差 - 残差平方和)/ 总方差 ”。
所以,R-Square理解成 “预测的误差的方差”小于实际情况的方差的比例。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容