5.单细胞 RNA-seq:质控后相关流程

单细胞 RNA-seq 聚类工作流程

现在我们有了高质量的细胞,我们可以继续后续流程。最终,我们希望对细胞进行聚类并识别潜在的不同细胞类型,但是还有几个步骤需要完成。下面的工作流程示意图中的绿色框对应于 QC 后采取的步骤,共同构成了聚类工作流程。

image

聚类流程

对于具有信息性的事物,它需要表现出变化,但并非所有变化都具有信息性。我们聚类分析的目标是在我们的数据集中保留主要的变异来源,同时限制由于无意义的变异来源(测序深度、细胞周期差异、线粒体表达、批次效应等)引起的变异。 )。然后,为了确定存在的细胞类型,我们将使用高度可变的基因进行聚类分析,以确定数据集中变异的主要来源。

此分析的工作流程改编自以下来源:

通过以下步骤识别亚群:

1. 探索不需要的变异的来源

第一步是查看我们的数据是否有未知的可变性因素。在单细胞 RNA-seq 数据中,最常见的评估生物学效应是细胞周期对转录组的影响。另一种已知的生物学效应是线粒体基因表达,这被解释为细胞压力的指示。这一步是探索我们的数据以确定我们想要回归的协变量。

2. 归一化和回归未知变化来源

Seurat 最近引入了一种新方法,sctransform对 scRNA-seq 数据执行多个处理步骤。需要标准化以缩放原始计数数据以获得细胞之间正确的相对基因表达丰度。该sctransform函数实现了数据的高级归一化和方差稳定性。该sctransform函数还回归了我们数据中不需要的变化的来源。在上一步中,我们已经确定了这些可变性来源,在这一步中我们需要指定了这些协变量是什么。

3. 整合

通常使用单细胞 RNA-seq,我们处理多个样本,这些样本对应于不同的样本组、多个实验或不同的模式。如果我们想最终比较组之间的细胞类型表达,建议整合数据。整合是一种强大的方法,它使用这些最大变异的共享源,识别跨条件或数据集的共享亚群 [Stuart and Butler et al. (2018)]。在 Seurat 中进行整合涉及几个步骤。完成后,我们使用可视化方法来确保在我们继续对细胞进行聚类之前进行良好的整合。

注意:整合是可选的。如果你的数据不需要整合,则不需要执行该步骤。

4. 聚类细胞

通过对基因表达值的相似性对细胞进行分组来获得细胞簇。表达谱相似性是通过距离度量确定的,通常将降维表示作为输入。Seurat 根据细胞的 PCA 分数将细胞分配到集群中,这些 PCA 分数源自整合的最大变化基因的表达。

5.亚群质量评估

在我们的数据中识别的亚群代表可能属于类似细胞类型的细胞组。在我们确定一组成员细胞的细胞类型之前,可采取以下步骤:

  • a.检查亚群是否受到无趣变化来源的影响。
  • b.检查主要的主成分是否驱动不同的亚群。
  • c.通过观察整个集群中已知标记的表达来探索细胞类型。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容