Numpy

学习目标

  • 了解Numpy运算速度上的优势
  • 知道数组的属性、形状、类型
  • 应用Num朋友实现数组的基本操作
  • 应用随机数组的创建实现正态分布应用
  • 应用Numpy实现数组的逻辑计算
  • 应用Numpy实现数组的统计运算
  • 应用Numpy实现数组之间的计算

4.1 Numpy优势

学习目标

  • 目标
    • 了解Numpy运算速度的优势
    • 知道Numpy的数组内存块风格
    • 知道Numpy的并行化运算
  • 应用
    -机器学习,深度学习各种框架的基础库

1 Numpy介绍

  • Numerical Python 是一个开源Python科学数据可,用于快速处理任意维度的数组。
  • 支持常见的数组和矩阵操作。对于同样的数值菊酸任务,使用Numpy比直接使用Python要简介很多。
  • Numpy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。

2 ndarrary的优势

  • 1 内存块风格
    ndarray在存储数据的时候,数据与数据的地址都是连续的,这样使得批量操作数组元素时速度更快
    ndarray中的所有元素类型都是相同的
  • 2 ndarray支持并行化计算(向量化计算)
  • 3 Numpy底层使用C语言编写

3 ndarray的基本操作

学习目标

  • 目标
    • 理解数组的各种生成方法
    • 应用数组的索引机制实现数组的切片获取
    • 应用维度变换实现数组的形状改变
    • 应用类型变换实现数组类型变换
    • 应用数组的转变
  • 应用
    -应用正态分布实现模拟股票涨跌幅数据操作

1 生成数据的方法

1.1 生成0和1的数组

1.2 从现有数组生成

1.2.1 生成方式
1.2.2 关于array和asarray的不同

1.3 生成固定范围的数组

1.4 生成随机数组

1.4.1 使用随机模块
1.4.2 均匀分布
1.4.3 正态分布

2 数组的索引、切片

3 形状修改

4 类型修改

5 数组去重

  • np.unique()
    不论之前几行,最终都返回一行
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容