物理简史
古代自然科学中,常提到亚里士多德的一个错误,越重的物体下落速度越快,我们自然都知道这是错误的,但是如果你将这一理论告诉一个比较小的孩子,他也许察觉不出错误在哪,因为什么呢?因为大多数没接受过科学的人判断一个理论是否正确的时候,往往通过类比与生活经验,从类比的角度,重的东西拿起来要更加费力,似乎掉下去更快也没什么。而生活经验告诉我们,一张纸和一枚质量与其相同的硬币,从空中下落自然是硬币快。因为空气阻力的原因,而小孩和古代人不知道或容易忽视空气阻力,所以亚里士多德的理论那么多年没人反对。这就是古代自然科学,往往很多知识理论来自生活经验,常常是主观的臆断。现代自然科学中,以伽利略实验为基础,牛顿提出了经典力学,通过较为精准的实验,合乎逻辑的推理论证,先进的数学工具(当时微积分同期出现,极限的思想也被应用到物理中,极大的推进了物理的发展)。经典物理学是科学中的典范,是现代科学的滥觞,牛顿之后一辈一辈的科学家将经典理论发展到了极致,尽管实验手段,数学工具都没有什么错误,但是在经典理论的源头还是参杂着主观思想,就是绝对的空间时间观念。(这是不可避免的,再伟大的科学家,没有后来的各种极致的实验,也是无法跳出这个观念的)经典物理认为时间空间是相互独立的,时间空间都具有连续性。然而随着科学的发展,生产的进步,实验能达到的水平不断提高,实验不仅仅停留在宏观低速了。这就是经典物理学,通过合理的实验,合乎逻辑的推理,结合先进的数学工具,在宏观低速的水平上研究这个世界。经典理论的巅峰已过,因为人们的视野不再被局限在宏观低速了,十九世纪的电力学已经暗示了光速不变的这一事实(麦克斯韦方程组),随后的许多科学实验也纷纷证明光速不变是事实。(不一一列举了,有很多人还是不理解为什么光速不变,因为我们大多数人还是习惯用经典理论的参照物参考系来模拟物体运动的场景,但是光速不变模拟不出来,所以不能理解,这是正常的,光速不变不是物理理论的结果,而是世界为什么这样的原因,是因果关系中的因,而不是果。现在没有任何实验证明有能携带信息的物质速度超过光速,也没有任何实验观测到光有相对速度,光速不变原理类似数学的公理,但是科学是可证伪的,如果谁发现了超光速的物体,发现光速有相对速度,那就能证明相对论是错的了,前提是你能发现),类似的实验还有迈克耳孙-莫雷干涉实验,水星近日点的进动等各类实验,尤其是天文实验,都验证了相对论,顺带一提新几何的建立也为相对论打下了基础,十八世纪非欧几何的研究是数学史上的一次重大突破。量子理论也是如此,光电效应等实验证明了光的不连续性,也验证了普兰克的量子理论。相对论与量子理论是现代物理学的基石,相对论将人们带入了高速世界,量子理论将人们带入了微观世界。尽管看起来不符合“逻辑”,但是事实就是如此,无数的实验告诉我们世界就是这样。物理学从此踏入了微观高速的新时代。我们纵观物理学史,从古代的勉强符合生活经验的物理理论,到局限于宏观低速经典理论,再到囊扩宏观微观低速高速的现代物理学,可以发现物理学的每一次进步,是适用范围的飞跃。展望未来,还有许多人类未知的事物,暗物质暗能量,夸克,虚粒子,这些新奇的事物是否能用现代理论解释,现在理论该如何调和,实验观测该如何再进一步,也许就等着我们的下一轮理论创新。
[if !supportLists]一、 [endif]力学1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比。6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。10、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 12、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。二、电磁学13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 14、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。 15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。119、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。 20、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。21、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。22、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。 23、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。 24、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。25、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。26、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。 27、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。28、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。三、热学29、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。 30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。 31、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。 32、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。指出绝对零度(-273.15℃)是温度的下限。T=t+273.15K 热力学第三定律:热力学零度不可达到。四、波动学33、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。34、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。 35、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。【相互接近,f增大;相互远离,f减少】 36、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波 37、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。 38、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。39、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。五、光学40、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。 41、1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。 42、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。 43、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;1887年,赫兹证实了电磁波的存在,光是一种电磁波 44、1905年,爱因斯坦提出了狭义相对论,有两条基本原理: ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的; ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。 45、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:。 46.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。 47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法) 48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。六、相对论49、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界), ②热辐射实验——量子论(微观世界);50、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。 51、1905年,爱因斯坦提出了狭义相对论,有两条基本原理: ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的; ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。52、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;53、激光——被誉为20世纪的“世纪之光”;七、波粒二象性54、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。 55、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)56、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。57、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;58、1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。八、原子物理学59、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。 60、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。61、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 62、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。 63、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10
-15m。 1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。 64、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。65、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;66、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。67、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。 68、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。 69、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。 70、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。 71、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。72、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。 73、1932年发现了正电子,1964年提出夸克模型;粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.
[if !supportLists]二、 [endif]Physics a brief history of
[if !supportLists]三、 [endif]
[if !supportLists]四、 [endif]In the ancient naturalsciences, Aristotle's error is often mentioned. Heavier objects fall faster. Ofcourse, we all know this is wrong. But if you tell this theory to a younger child,he may not know where the error is. Because most people who have not acceptedscience judge whether a theory is correct or not, often by analogy and lifeexperience, from the perspective of analogy, heavy things take more effort topick up, it seems that it is OK to fall faster. And life experience tells usthat a piece of paper and a coin of the same mass will fall through the airfaster than the coin. Because of air resistance, which children and ancientpeople did not know or easily ignored, Aristotle's theory was not opposed forso many years. This is the ancient natural science, often a lot of knowledgeand theory from life experience, often subjective assumptions. In modernnatural science, based on Galileo's experiments, Newton proposed classicalmechanics through relatively accurate experiments, logical reasoning anddemonstration, advanced mathematical tools (when calculus appeared at the sametime, the idea of limit was also applied to physics, which greatly promoted thedevelopment of physics). Classical physics is a model in science and the originof modern science. Generations of scientists after Newton have developedclassical theories to the extreme. Although there is nothing wrong withexperimental methods and mathematical tools, the source of classical theoriesis still mixed with subjective ideas, that is, the absolute concept of spaceand time. (This is inevitable, no matter how great a scientist is, he cannotget out of this idea without all kinds of extreme experiments.) Classical physicsbelieves that time and space are independent of each other, and both time andspace are continuous. However, with the development of science and the progressof production, the level of experiment can be improved continuously, and theexperiment is not only stuck in the macro low speed. This is classical physics,through rational experiments, logical reasoning, combined with advancedmathematical tools, to study the world at the macroscopic, low-speed level. Thepeak of classical theory is over, because people's view is no longer limited tomacroscopic low speed, the fact that the speed of light is constant has beenimplied by the electrical science of the nineteenth century (Maxwell'sequations), and many subsequent scientific experiments have proved that thespeed of light is constant. (not list one by one, there are a lot of peoplestill don't understand why the speed of light is constant, because most of usstill use the classical theory of reference frame of reference to simulate themovement of the object, but the speed of light is constant simulation not tocome out, so can't understand, this is normal, the speed of light, the same isnot the result of physical theory, but the world why so, Is the cause of acausal relationship, not the effect. There is no experimental proof materialcan carry information faster than the speed of light, do not have anyexperimental observation to the relative velocity of light is, the speed oflight, the same principle of similar mathematical axioms, but the science isfalsifiable, if who discovered superluminal objects, found a relative velocity,the speed of light that can prove the theory of relativity is wrong, thepremise is you can find), Similar experiments and Michelson-Morley interferenceexperiment, Mercury perihelion precession and other kinds of experiments,especially astronomical experiments, have verified the theory of relativity. Bythe way, the establishment of new geometry also laid the foundation for thetheory of relativity. The study of non-Euclidean geometry in the 18th centurywas a major breakthrough in the history of mathematics. The same is true ofquantum theory, where experiments such as the photoelectric effect prove thediscontinuity of light and verify Plank's quantum theory. Relativity andquantum theory are the cornerstones of modern physics. Relativity brings peopleinto the high-speed world, while quantum theory brings people into themicroscopic world. It may not seem "logical," but it is, andcountless experiments have shown us that it is. Physics has since stepped intoa new era of microscopic high-speed. Throughout the history of physics, we canfind that every progress in physics is a leap in the scope of application, fromthe ancient physical theories that barely fit the life experience, to theclassical theories that are limited to macroscopic low-speed, and then to themodern physics that expands macroscopic and microscopic low-speed. Lookingahead, there are still many things we don't know, dark matter, dark energy,quarks, virtual particles, whether these novel things can be explained bymodern theory, how to reconcile the theory now, how to take the experimentalobservation further, may be waiting for our next round of theoreticalinnovation.
[if !supportLists]五、 [endif]
[if !supportLists]六、 [endif]1. In 1638, the Italianphysicist Galileo Galilei used scientific reasoning in the Dialogue of the TwoNew Sciences to prove that heavy objects fall as fast as light objects; And inthe Leaning Tower of Pisa to do two different masses of the ball fallingexperiment, proved his point of view is correct, overturned the ancient Greekscholar Aristotle's point of view (namely: the mass of the ball falling fast iswrong); 2. In 1654, the city of Madburg in Germany made a sensationalexperiment -- the Madburg Hemisphere experiment; 3. In 1687, the Englishscientist Isaac Newton put forward three laws of motion (namely Newton's threelaws of motion) in his work The Mathematical Principles of Natural Philosophy.4. In the 17th century, Galileo pointed out through his idealized experimentthat if an object moving on a horizontal plane had no friction, it would keepmoving at this speed forever. It concludes that force is what changes themotion of the body, overturning Aristotle's view that force is what keeps thebody moving. The contemporary French physicist Descartes further pointed outthat, if there is no other reason, a moving body will continue to move in astraight line with the same speed, neither stopping nor deviating from itsoriginal direction. 5, British physicist Hooke's contribution to physics:Hooke's law; Hooke thought that only under certain conditions, the spring forceis proportional to the shape of the spring variable. 6. In 1638, Galileo made adetailed study of projectile motion using the method of observation, hypothesisand mathematical reasoning in his book Dialogue between the Two New Sciences.In the 17th century, Galileo pointed out through the ideal experiment that anobject moving on a horizontal surface will keep moving at the same speed ifthere is no friction. The contemporary French physicist Descartes furtherpointed out that, if there is no other reason, a moving body will continue tomove in a straight line with the same speed, neither stopping nor deviatingfrom its original direction. 7, according to the daily observation andexperience, people put forward the "geocentric theory", the ancientGreek scientist Ptolemy is a representative; The Polish astronomer Copernicusput forward the "heliocentric theory", boldly refuting the geocentrictheory. In the 8th and 17th centuries, the German astronomer Kepler put forwardKepler's three laws. 9. Newton officially published the law of gravitation in1687; In 1798, Cavendish, a British physicist, accurately measured thegravitational constant by using the torsion scale experiment device. 10. In1846, Adams, a student at the University of Cambridge in England, and LeVerrier, a French astronomer, applied the law of universal gravity to calculateand observe Neptune. In 1930, Tang Bract, an American astronomer, discoveredPluto with the same calculation method. Russian scientist Alexander Tsiolkovskyis known as the father of modern rockets. He first proposed the concept ofmultistage rockets and inertial navigation. Multistage rockets are generallythree-stage rockets. Our country has become the third country to master mannedspace technology. 10. In October 1957, the Soviet Union launched the firstartificial Earth satellite; In April 1961, the world's first manned spacecraft,Vostok 1, took Yuri Gagarin into space for the first time. 11. Theestablishment of quantum mechanics in the early 20th century and Einstein'sspecial theory of relativity showed that classical mechanics did not apply tomicroscopic particles and objects moving at high speeds. In the 12th and 17thcenturies, the German astronomer Kepler put forward Kepler's three laws; Newtonofficially published his law of gravitation in 1687; In 1798, Cavendish, aBritish physicist, accurately measured the gravitational constant (reflectingthe idea of amplification and transformation) by using the torsion scaledevice. In 1846, scientists used the law of gravity to calculate and observeNeptune. 13. In 1785, the French physicist Coulomb discovered Coulomb's law,the law of interaction between electric charges, by using the torsion scaleexperiment, and measured the value of the electrostatic force constant K. 14.In 1752, Franklin proved that lightning was a form of electrical dischargethrough kite experiments in Philadelphia, unified the natural electricity andthe earth electricity, and invented the lightning rod. 15. In 1837, Britishphysicist Faraday first introduced the concept of electric field and proposedto represent electric field with electric field line. 16, 1913, the Americanphysicist Millikan through the oil drop experiment accurate determination ofthe amount of elementary charge E charge, won the Nobel Prize. 17. In 1826, theGerman physicist Ohm (1787-1854) came up with Ohm's law through experiments.18. In 1911, the Dutch scientist Annes (or Annes) discovered that most metals,when their temperature drops to a certain value, have a phenomenon calledsuperconductivity, in which their resistance suddenly drops to zero. 119. Inthe 19th century, Joule and Lenz independently discovered the law of thermaleffect when an electric current passes through a conductor, namely Joule-Lenz'slaw. 20. In 1820, the Danish physicist Oster found that electric current candeflect small magnetic needles around, which is called current magnetic effect.21. French physicist Amper found that two parallel wires with currents in thesame direction attract each other, while parallel wires with currents in theopposite direction repel each other, and proposed the hypothesis ofampere-induced molecular current. The amperage rule (right hand helix rule) issummarized to judge the relationship between the current and the magneticfield, and the left hand rule is summarized to judge the direction of themagnetic force of the current wire in the magnetic field. 22. Lorentz, a Dutchphysicist, proposed the idea that moving electric charges generate magneticfields and that magnetic fields exert forces on moving charges (Lorentzforces). 23, the British physicist Thompson discovered the electron, andpointed out: cathode rays are high-speed electron flow. 24. Aston, a student ofTom's, designed a mass spectrometer to measure the mass of charged particlesand analyze isotopes. 25. In 1932, American physicist Laurentz invented acyclotron that could produce a large number of high-energy particles in thelaboratory. (The maximum kinetic energy depends only on the magnetic field andD-box diameter. The circular motion period of the charged particle is the sameas that of the high-frequency power supply. However, when the particle has alarge kinetic energy and the speed is close to the speed of light, according tothe special relativity theory, the mass of the particle increases significantlywith the speed, and the cyclotron period of the particle in the magnetic fieldchanges, so it is difficult to further increase the speed of the particle. 26.In 1831, British physicist Faraday discovered the condition and law of electriccurrent produced by magnetic field -- the law of electromagnetic induction. 27,In 1834, the Russian physicist Lenz published a law to determine the directionof induced current - Lenz's law. 28, 1835, the American scientist Henry foundself-induction phenomenon (due to current changes in the circuit itself causedby induced electromotive force phenomenon), the working principle of thefluorescent lamp is one of its applications, double winding precisionresistance to eliminate the influence of one of the applications. 29. In 1827,British botanist Brown discovered that pollen particles suspended in water keptdoing irregular motion phenomenon - Brownian motion. 30. In the middle of the19th century, the law of conservation of energy was finally determined by theGerman doctor Mayr, the British physicist J. Joule, and the German scholarHelmholtz. 31. In 1850, Clausius proposed a qualitative statement of the secondlaw of thermodynamics: it is impossible to transfer heat from a cold body to ahot body without other effects, called Clausius statement. The following yearKelvin put forward another statement: it is impossible to take heat from asingle source and turn it completely into useful work without other effects,called the Kelvin statement. 32. In 1848 Kelvin proposed the thermodynamictemperature scale, pointing out that absolute zero is the lower limit oftemperature. It is pointed out that absolute zero (-273.15℃) is the lower limitof temperature. T= T +273.15K The third law of thermodynamics: thermodynamiczero is not attainable. 33, In the 17th century, the Dutch physicist Huygensdetermined the simple pendulum period formula. A pendulum with a period of 2sis called a second pendulum. 34. In 1690, Huygens, a Dutch physicist, proposedthe phenomenon law of mechanical wave fluctuation -- Huygens' principle. 35.The Austrian physicist Doppler (1803-1853) first discovered the Doppler effect,a phenomenon that causes the observer to feel the change in frequency due tothe relative motion between the wave source and the observer. 36. In 1864, theBritish physicist Maxwell published the Dynamical Theory of ElectromagneticField, proposing the theory of electromagnetic field, predicting the existenceof electromagnetic wave and pointing out that light is a kind ofelectromagnetic wave, which laid the foundation for the electromagnetic theoryof light. Electromagnetic wave is a transverse wave 37. In 1887, the Germanphysicist Hertz confirmed the existence of electromagnetic wave withexperiments and determined that the propagation speed of electromagnetic waveis equal to the speed of light. 38. In 1894, Italy's Marconi and Russia's Popovrespectively invented the wireless telegraph, opening a new chapter in radiocommunication. 39. In 1800, the British physicist Herschel discovered infraredlight; In 1801, German physicist Ritter discovered ultraviolet light; 1895German PHYSICIST RoENTGEN DISCOVERED X-RAYS (ROENTGEN RAYS) AND TOOK THEWORLD'S FIRST X-ray PHOTOGRAPH OF THE HUMAN BODY FOR HIS WIFE'S HAND. 40. In1621, the Dutch mathematician Snell found the law between the Angle ofincidence and the Angle of refraction - the law of refraction. 41. In 1801, theBritish physicist Thomas Young successfully observed the interference of light.42. In 1818, French scientists Freel and Poisson calculated and experimentallyobserved the circular plate diffraction of light -- Poisson bright spot. 43,1864, the British physicist Maxwell predicted the existence of electromagneticwaves, pointed out that light is a kind of electromagnetic wave; In 1887, Hertzconfirmed the existence of electromagnetic waves, light is a kind ofelectromagnetic wave 44, 1905, Einstein put forward the special theory ofrelativity, there are two basic principles: (1) the principle of relativity -different inertial reference frame, all the physical laws are the same; ② Theprinciple of constant speed of light -- in different inertial reference frames,the speed of light in vacuum must be C constant. 45. Einstein also came up withan important conclusion in the theory of relativity, the mass-energy equation:.46. From 468 BC to 376 BC, Chinese Mo Zhai and his disciples recorded thestraight-line propagation of light, the formation of shadows, the reflection oflight, and the imaging of plane and spherical mirrors in the book of Mo, whichis the earliest optical work in the world. In 1849, the French physicist Fiseaufirst measured the speed of light on the ground. Later, many scientists usedmore precise methods to determine the speed of light, such as the rotatingprism method of the American physicist Michelson. (note the method ofmeasurement) 48. As to the nature of light, two theories were clearly developedin the 17th century. One was the corporeal theory advocated by Newton, thatlight is a particle of matter emitted by a light source; The other is the wavetheory, proposed by the Dutch physicist Huygens, which holds that light is akind of wave that travels through space. Neither theory could explain all thelight phenomena observed at the time. Relativity 49 Physics Two dark clouds ina clear sky: ① the Michelson-Morley experiment on relativity (high speedworld), ② the thermal radiation experiment on quantum theory (microscopicworld); 50. At the turn of the 19th century and the 20th century, there werethree major discoveries in physics: the discovery of X-rays, the discovery ofelectrons, and the discovery of radioactivity. 51, In 1905, Einstein putforward the special theory of relativity, there are two basic principles: (1)the principle of relativity - different inertial reference frame, all physicallaws are the same; ② The principle of constant speed of light -- in differentinertial reference frames, the speed of light in vacuum must be C constant. 52.In 1900, German physicist Planck explained the law of thermal radiation ofobjects and put forward the quantum hypothesis of energy: matter emission