【算法】决策树算法

0x01 概述

决策树是附加概率结果的一个树状的决策图,是直观的运用统计概率分析的图法。机器学习中决策树是一个预测模型,它表示对象属性和对象值之间的一种映射,树中的每一个节点表示对象属性的判断条件,其分支表示符合节点条件的对象。树的叶子节点表示对象所属的预测结果。

0x02 决策树案例

决策树案例

上图是一棵结构简单的决策树,用于预测贷款用户是否具有偿还贷款的能力。贷款用户主要具备三个属性:是否拥有房产,是否结婚,平均月收入。每一个内部节点都表示一个属性条件判断,叶子节点表示贷款用户是否具有偿还能力。例如:用户甲没有房产,没有结婚,月收入 5K。通过决策树的根节点判断,用户甲符合右边分支 (拥有房产为“否”);再判断是否结婚,用户甲符合左边分支 (是否结婚为否);然后判断月收入是否大于 4k,用户甲符合左边分支 (月收入大于 4K),该用户落在“可以偿还”的叶子节点上。所以预测用户甲具备偿还贷款能力。

0x03 决策树的构建

决策树算法主要是指决策树进行创建中进行树分裂(划分数据集)的时候选取最优特征的算法,他的主要目的就是要选取一个特征能够将分开的数据集尽量的规整,也就是尽可能的纯. 最大的原则就是: 将无序的数据变得更加有序

总结三个常用的方法:

信息增益(information gain)
增益比率(gain ratio)
基尼不纯度(Gini impurity)
  1. 信息增益(information gain)
  • 某个事件 i 的信息量: 这个事件发生的概率的负对数
  • 信息熵就是平均而言一个事件发生得到的信息量大小,也就是信息量的期望值

我们将一组数据集进行划分后,数据的信息熵会发生改变,我们可以通过使用信息熵的计算公式分别计算被划分的子数据集的信息熵并计算他们的平均值(期望值)来作为分割后的数据集的信息熵。新的信息熵的相比未划分数据的信息熵的减小值便是信息增益了。
假设我们将数据集D划分成k份,则划分后的信息熵为

信息增益便是两个信息熵的差值

  1. 增益比率(gain ratio)

增益比率是信息增益方法的一种扩展,是为了克服信息增益带来的弱泛化的缺陷。因为按照信息增益选择,总是会倾向于选择分支多的属性,这样会是的每个子集的信息熵最小。例如给每个数据添加一个第一无二的id值特征,则按照这个id值进行分类是获得信息增益最大的,这样每个子集中的信息熵都为0,但是这样的分类便没有任何意义,没有任何泛化能力,类似过拟合。

分裂信息的公式为:

image.png

这时候把分裂信息的值放到分母上便会中和信息增益带来的弊端。

  1. 基尼不纯度(Gini impurity)

基尼不纯度的定义:

其中m 表示数据集D 中类别的个数, pi 表示某种类型出现的概率。
针对划分成k个子集的基尼不纯度计算公式:

对于特征选取,需要选择最小的分裂后的基尼指数。也可以用基尼指数增益值作为决策树选择特征的依据。

在决策树选择特征时,应选择基尼指数增益值最大的特征,作为该节点分裂条件。

0x04 决策树的剪枝

在分类模型建立的过程中,很容易出现过拟合的现象。

过拟合是指在模型学习训练中,训练样本达到非常高的逼近精度,但对检验样本的逼近误差随着训练次数而呈现出先下降后上升的现象。

过拟合时训练误差很小,但是检验误差很大,不利于实际应用。
决策树的过拟合现象可以通过剪枝进行一定的修复。剪枝分为预先剪枝和后剪枝两种。

  1. 预先剪枝

预先剪枝指在决策树生长过程中,使用一定条件加以限制,使得产生完全拟合的决策树之前就停止生长。预先剪枝的判断方法也有很多,比如信息增益小于一定阀值的时候通过剪枝使决策树停止生长。但如何确定一个合适的阀值也需要一定的依据,阀值太高导致模型拟合不足,阀值太低又导致模型过拟合。

  1. 后剪枝

后剪枝是在决策树生长完成之后,按照自底向上的方式修剪决策树。后剪枝有两种方式,一种用新的叶子节点替换子树,该节点的预测类由子树数据集中的多数类决定。另一种用子树中最常使用的分支代替子树。

预先剪枝可能过早的终止决策树的生长,后剪枝一般能够产生更好的效果。但后剪枝在子树被剪掉后,决策树生长的一部分计算就被浪费了。

0x05 参考文献

https://www.ibm.com/developerworks/cn/analytics/library/ba-1507-decisiontree-algorithm/index.html
http://python.jobbole.com/87994/
http://blog.csdn.net/xbinworld/article/details/44660339

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容

  • 决策树理论在决策树理论中,有这样一句话,“用较少的东西,照样可以做很好的事情。越是小的决策树,越优于大的决策树”。...
    制杖灶灶阅读 5,832评论 0 25
  • 转自算法杂货铺--决策树决策树和随机森林学习笔记-欢迎补充 http://www.cnblogs.com/fion...
    明翼阅读 10,703评论 1 6
  • 一.朴素贝叶斯 1.分类理论 朴素贝叶斯是一种基于贝叶斯定理和特征条件独立性假设的多分类的机器学习方法,所...
    wlj1107阅读 3,070评论 0 5
  • 这里开始机器学习的笔记记录。今天的这篇是一个分类方法--决策树。 决策树优点:计算复杂度不高,输出结果易于理解,对...
    七号萝卜阅读 6,430评论 0 18
  • 积跬步以致千里,积怠惰以致深渊 注:本篇文章在整理时主要参考了 周志华 的《机器学习》。 主要内容 决策树是机器学...
    指尖上的魔术师阅读 1,367评论 0 5