时间复杂度,一套漫画 带你全部搞懂

原po:程序员小灰,仅供学习交流,侵删
https://mp.weixin.qq.com/s?__biz=MzIxMjE5MTE1Nw==&mid=2653195121&idx=1&sn=bf456092c1f1a5e728c8d0a571483dcd&chksm=8c99f9abbbee70bd427e1083f8a4064affd3138490e23666756a8e56061054040d6ebfb4bcce&scene=21#wechat_redirect

有趣有内涵的文章第一时间送达!

image
image
image
image
image
image

时间复杂度的意义

究竟什么是时间复杂度呢?让我们来想象一个场景:

某一天,小灰和大黄同时加入了一个公司......

image.png

一天过后,小灰和大黄各自交付了代码,两端代码实现的功能都差不多。

大黄的代码运行一次要花100毫秒,内存占用5MB

小灰的代码运行一次要花100秒,内存占用500MB

于是......

image.png
image.png

由此可见,衡量代码的好坏包括两个非常重要的指标:

1.运行时间

2.占用空间

image
image

基本操作执行次数

关于代码的基本操作执行次数,我们用四个生活中的场景来做一下比喻:

场景1. 给小灰一条长10寸的面包,小灰每3天吃掉1寸,那么吃掉整个面包需要几天?

image

答案自然是 3 X 10 = 30天。

如果面包的长度是 N 寸呢?

此时吃掉整个面包,需要 3 X n = 3n 天。

如果用一个函数来表达这个相对时间,可以记作 T(n) = 3n

场景2. 给小灰一条长16寸的面包,小灰每5天吃掉面包剩余长度的一半,第一次吃掉8寸,第二次吃掉4寸,第三次吃掉2寸......那么小灰把面包吃得只剩下1寸,需要多少天呢?

这个问题翻译一下,就是数字16不断地除以2,除几次以后的结果等于1?这里要涉及到数学当中的对数,以2位底,16的对数,可以简写为log16。

因此,把面包吃得只剩下1寸,需要 5 X log16 = 5 X 4 = 20 天。

如果面包的长度是 N 寸呢?

需要 5 X logn = 5logn天,记作 T(n) = 5logn

场景3. 给小灰一条长10寸的面包和一个鸡腿,小灰每2天吃掉一个鸡腿。那么小灰吃掉整个鸡腿需要多少天呢?

image

答案自然是2天。因为只说是吃掉鸡腿,和10寸的面包没有关系。

如果面包的长度是 N 寸呢?

无论面包有多长,吃掉鸡腿的时间仍然是2天,记作 T(n) = 2

场景4. 给小灰一条长10寸的面包,小灰吃掉第一个一寸需要1天时间,吃掉第二个一寸需要2天时间,吃掉第三个一寸需要3天时间.....每多吃一寸,所花的时间也多一天。那么小灰吃掉整个面包需要多少天呢?

答案是从1累加到10的总和,也就是55天。

如果面包的长度是 N 寸呢?

此时吃掉整个面包,需要 1+2+3+......+ n-1 + n = (1+n)*n/2 = 0.5n^2 + 0.5n。

记作 T(n) = 0.5n^2 + 0.5n

image

上面所讲的是吃东西所花费的相对时间,这一思想同样适用于对程序基本操作执行次数的统计。刚才的四个场景,分别对应了程序中最常见的四种执行方式:

场景1, T(n) = 3n,执行次数是线性的。

1.  `void eat1(int n){`

2.  `for(int i=0; i<n; i++){;`

3.  `System.out.println("等待一天");`

4.  `System.out.println("等待一天");`

5.  `System.out.println("吃一寸面包");`

6.  `}`

7.  `}`

场景2, T(n) = 5logn,执行次数是对数的。

3.  `void eat2(int n){`

4.  `for(int i=1; i<n; i*=2){`

5.  `System.out.println("等待一天");`

6.  `System.out.println("等待一天");`

7.  `System.out.println("等待一天");`

8.  `System.out.println("等待一天");`

9.  `System.out.println("吃一半面包");`

10.  `}`

11.  `}`

场景3,T(n) = 2,执行次数是常量的。

3.  `void eat3(int n){`

4.  `System.out.println("等待一天");`

5.  `System.out.println("吃一个鸡腿");`

6.  `}`

场景4,T(n) = 0.5n^2 + 0.5n,执行次数是一个多项式

3.  `void eat4(int n){`

4.  `for(int i=0; i<n; i++){`

5.  `for(int j=0; j<i; j++){`

6.  `System.out.println("等待一天");`

7.  `}`

8.  `System.out.println("吃一寸面包");`

9.  `}`

10.  `}`

渐进时间复杂度

有了基本操作执行次数的函数 T(n),是否就可以分析和比较一段代码的运行时间了呢?还是有一定的困难。

比如算法A的相对时间是T(n)= 100n,算法B的相对时间是T(n)= 5n^2,这两个到底谁的运行时间更长一些?这就要看n的取值了。

所以,这时候有了渐进****时间复杂度(asymptotic time complectiy)的概念,官方的定义如下:

若存在函数 f(n),使得当n趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称 f(n)是T(n)的同数量级函数。

记作 ****T(n)= O(f(n)),称O(f(n))** 为算法的渐进时间复杂度,简称时间复杂度。**

渐进时间复杂度用大写O来表示,所以也被称为大O表示法

image
image

如何推导出时间复杂度呢?有如下几个原则:

  1. 如果运行时间是常数量级,用常数1表示。
  1. 只保留时间函数中的最高阶项

  2. 如果最高阶项存在,则省去最高阶项前面的系数。

让我们回头看看刚才的四个场景。

场景1:

T(n) = 3n

最高阶项为3n,省去系数3,转化的时间复杂度为:

****T(n) = O(n)****

image.gif

场景2:

T(n) = 5logn

最高阶项为5logn,省去系数5,转化的时间复杂度为:

****T(n) = O(logn)****

image.gif

场景3:

T(n) = 2

只有常数量级,转化的时间复杂度为:

****T(n) = O(1)****

image.gif

场景4:

T(n) = 0.5n^2 + 0.5n

最高阶项为0.5n^2,省去系数0.5,转化的时间复杂度为:

****T(n) = O(n^2)****

image

这四种时间复杂度究竟谁用时更长,谁节省时间呢?稍微思考一下就可以得出结论:

****O(1)< ********O(logn)< ****O(n)< ****O(n^2)************

在编程的世界中有着各种各样的算法,除了上述的四个场景,还有许多不同形式的时间复杂度,比如:

********O(nlogn), ****O(n^3), ****O(m*n),O(2^n),O(n!)****************

今后遨游在代码的海洋里,我们会陆续遇到上述时间复杂度的算法。

image

****************时间复杂度的巨大差异****************

image
image

我们来举过一个栗子:

算法A的相对时间规模是T(n)= 100n,时间复杂度是O(n)

算法B的相对时间规模是T(n)= 5n2,时间复杂度是O(n2),

算法A运行在小灰家里的老旧电脑上,算法B运行在某台超级计算机上,运行速度是老旧电脑的100倍。

那么,随着输入规模 n 的增长,两种算法谁运行更快呢?

image

从表格中可以看出,当n的值很小的时候,算法A的运行用时要远大于算法B;当n的值达到1000左右,算法A和算法B的运行时间已经接近;当n的值越来越大,达到十万、百万时,算法A的优势开始显现,算法B则越来越慢,差距越来越明显。

这就是不同时间复杂度带来的差距。

image

几点补充:

小灰写这篇时间复杂度的科普时才意识到,对于基础概念的讲解,比讲解具体算法要困难得多。希望大家对本文多提出宝贵意见,感谢大家!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345