Python Elasticsearch DSL 查询、过滤、聚合操作实例

Elasticsearch 基本概念

Index:Elasticsearch用来存储数据的逻辑区域,它类似于关系型数据库中的database 概念。一个index可以在一个或者多个shard上面,同时一个shard也可能会有多个replicas。

Document:Elasticsearch里面存储的实体数据,类似于关系数据中一个table里面的一行数据。

document由多个field组成,不同的document里面同名的field一定具有相同的类型。document里面field可以重复出现,也就是一个field会有多个值,即multivalued。

Document type:为了查询需要,一个index可能会有多种document,也就是document type. 它类似于关系型数据库中的 table 概念。但需要注意,不同document里面同名的field一定要是相同类型的。

Mapping:它类似于关系型数据库中的 schema 定义概念。存储field的相关映射信息,不同document type会有不同的mapping。

下图是ElasticSearch和关系型数据库的一些术语比较:

Relationnal database Elasticsearch
Database Index
Table Type
Row Document
Column Field
Schema Mapping
Schema Mapping
Index Everything is indexed
SQL Query DSL
SELECT * FROM table… GET http://…
UPDATE table SET PUT http://…

Python Elasticsearch DSL 使用简介

连接 Es:

import elasticsearch

es = elasticsearch.Elasticsearch([{'host': '127.0.0.1', 'port': 9200}])

先看一下搜索,q 是指搜索内容,空格对 q 查询结果没有影响,size 指定个数,from_ 指定起始位置,filter_path 可以指定需要显示的数据,如本例中显示在最后的结果中的只有 _id_type

res_3 = es.search(index="bank", q="Holmes", size=1, from_=1)
res_4 = es.search(index="bank", q=" 39225    5686 ", size=1000, filter_path=['hits.hits._id', 'hits.hits._type'])

查询指定索引的所有数据:

其中,index 指定索引,字符串表示一个索引;列表表示多个索引,如 index=["bank", "banner", "country"];正则形式表示符合条件的多个索引,如 index=["apple*"],表示以 apple 开头的全部索引。

search 中同样可以指定具体 doc-type

from elasticsearch_dsl import Search

s = Search(using=es, index="index-test").execute()
print s.to_dict()

根据某个字段查询,可以多个查询条件叠加:

s = Search(using=es, index="index-test").query("match", sip="192.168.1.1")
s = s.query("match", dip="192.168.1.2")
s = s.excute()

多字段查询:

from elasticsearch_dsl.query import MultiMatch, Match

multi_match = MultiMatch(query='hello', fields=['title', 'content'])
s = Search(using=es, index="index-test").query(multi_match)
s = s.execute()

print s.to_dict()

还可以用 Q() 对象进行多字段查询,fields 是一个列表,query 为所要查询的值。

from elasticsearch_dsl import Q

q = Q("multi_match", query="hello", fields=['title', 'content'])
s = s.query(q).execute()

print s.to_dict()

Q() 第一个参数是查询方法,还可以是 bool


q = Q('bool', must=[Q('match', title='hello'), Q('match', content='world')])
s = s.query(q).execute()

print s.to_dict()

通过 Q() 进行组合查询,相当于上面查询的另一种写法。

q = Q("match", title='python') | Q("match", title='django')
s = s.query(q).execute()
print(s.to_dict())
# {"bool": {"should": [...]}}

q = Q("match", title='python') & Q("match", title='django')
s = s.query(q).execute()
print(s.to_dict())
# {"bool": {"must": [...]}}

q = ~Q("match", title="python")
s = s.query(q).execute()
print(s.to_dict())
# {"bool": {"must_not": [...]}}

过滤,在此为范围过滤,range 是方法,timestamp 是所要查询的 field 名字,gte 为大于等于,lt 为小于,根据需要设定即可。

关于 termmatch 的区别,term 是精确匹配,match 会模糊化,会进行分词,返回匹配度分数,(term 如果查询小写字母的字符串,有大写会返回空即没有命中,match 则是不区分大小写都可以进行查询,返回结果也一样)

# 范围查询
s = s.filter("range", timestamp={"gte": 0, "lt": time.time()}).query("match", country="in")
# 普通过滤
res_3 = s.filter("terms", balance_num=["39225", "5686"]).execute()

其他写法:

s = Search()
s = s.filter('terms', tags=['search', 'python'])
print(s.to_dict())
# {'query': {'bool': {'filter': [{'terms': {'tags': ['search', 'python']}}]}}}

s = s.query('bool', filter=[Q('terms', tags=['search', 'python'])])
print(s.to_dict())
# {'query': {'bool': {'filter': [{'terms': {'tags': ['search', 'python']}}]}}}
s = s.exclude('terms', tags=['search', 'python'])
# 或者
s = s.query('bool', filter=[~Q('terms', tags=['search', 'python'])])
print(s.to_dict())
# {'query': {'bool': {'filter': [{'bool': {'must_not': [{'terms': {'tags': ['search', 'python']}}]}}]}}}

聚合可以放在查询,过滤等操作的后面叠加,需要加 aggs

bucket 即为分组,其中第一个参数是分组的名字,自己指定即可,第二个参数是方法,第三个是指定的 field

metric 也是同样,metric 的方法有 sumavgmaxmin 等,但是需要指出的是,有两个方法可以一次性返回这些值,statsextended_stats,后者还可以返回方差等值。

# 实例1
s.aggs.bucket("per_country", "terms", field="timestamp").metric("sum_click", "stats", field="click").metric("sum_request", "stats", field="request")

# 实例2
s.aggs.bucket("per_age", "terms", field="click.keyword").metric("sum_click", "stats", field="click")

# 实例3
s.aggs.metric("sum_age", "extended_stats", field="impression")

# 实例4
s.aggs.bucket("per_age", "terms", field="country.keyword")

# 实例5,此聚合是根据区间进行聚合
a = A("range", field="account_number", ranges=[{"to": 10}, {"from": 11, "to": 21}])

res = s.execute()

最后依然要执行 execute(),此处需要注意,s.aggs 操作不能用变量接收(如 res=s.aggs,这个操作是错误的),聚合的结果会保存到 res 中显示。

排序

s = Search().sort(
    'category',
    '-title',
    {"lines" : {"order" : "asc", "mode" : "avg"}}
)

分页

s = s[10:20]
# {"from": 10, "size": 10}

一些扩展方法,感兴趣的同学可以看看:

s = Search()

# 设置扩展属性使用`.extra()`方法
s = s.extra(explain=True)

# 设置参数使用`.params()`
s = s.params(search_type="count")

# 如要要限制返回字段,可以使用`source()`方法
# only return the selected fields
s = s.source(['title', 'body'])
# don't return any fields, just the metadata
s = s.source(False)
# explicitly include/exclude fields
s = s.source(include=["title"], exclude=["user.*"])
# reset the field selection
s = s.source(None)

# 使用dict序列化一个查询
s = Search.from_dict({"query": {"match": {"title": "python"}}})

# 修改已经存在的查询
s.update_from_dict({"query": {"match": {"title": "python"}}, "size": 42})

参考文档:

http://fingerchou.com/2017/08/12/elasticsearch-dsl-with-python-usage-1/

http://fingerchou.com/2017/08/13/elasticsearch-dsl-with-python-usage-2/

https://blog.csdn.net/JunFeng666/article/details/78251788

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容