集群调度框架的架构演进之路
图一:不同调度架构,灰色框代表集群设备,圆圈代表任务,Si代表调度器。其中a是单体式调度器;b是二级调度;c是共享状态调度;d是分布式调度;e是混合式调度。许多集群架构,例如大量高性能计算(HPC),使用的是Borg调度器,它跟Hadoop调度器和Kubernetes调度器完全不同,是单体式调度。
单体式调度单一调度进程运行在一台物理机内(例如Hadoop
V1中JobTacker,Kubernetes中的kube-scheduler),将任务指派给集群内其它物理机。所有负载都服从于一个调度器,所有任务都通过这一个调度逻辑运行(参见图一a)。这种架构最简单格式唯一,在此基础上发展起了很多负载的调度器,例如Paragon和Quasar调度器,采用机器学习方法来避免不同负载之间资源竞争。今天集群都运行着不同类型的应用(与之相对应的是MapReduce早期作业场景),然而,采用单一调度器来处理这么复杂异构负载会很棘手,有几个原因:调度器必须区分对待长期运行服务作业和批量分析作业,这是合理的需求。因为不同应用有不同的需求,催生调度器内加入更多功能,增加业务逻辑和部署方式。调度器处理任务顺序变成一个问题:如果调度器不仔细设计,队列效果(例如线头阻塞head-of-line
blocking)和回滚会成为问题。 总之,这听起来像是给工程师带来噩梦,调度器维护者面对的没完没了的功能请求证实了这点。
二级调度
二级调度通过将资源调度和任务调度分离解决了这个问题,这使得任务调度逻辑不仅可以根据不同应用要求而进行裁剪,而且保留了在集群之间共享资源的可能性。尽管侧重点不同,Mesos和
YARN集群管理都使用了这种方法:Mesos中,资源是主动提供(offer)给应用层调度,而YARN则允许应用层调度请求(request)资源(,并且随后接受被分配资源)。图一b展示了这一概念,作业负责调度(S0-S2)跟资源管理器交互,资源管理器则给每个作业分配动态资源。这一方案赋予客户灵活调度作业策略的可能性。然而,通过二级调度解决问题也有问题:应用层调度将资源全局调度隐藏起来,也就是说,不再能看到全局性的可选资源配置。相反,只能看到资源管理器主动提供(offer,对应于Mesos)或者请求/分配(request/allocate,对应于YARN)给应用的资源。由此带来一些问题:重入优先权(也就是高优先权会将低优先权任务剔除)实现变的很困难。在基于offer模式,被运行中任务占用的资源对高一级调度器不可见;在基于request模式,底层资源管理器必须理解重入策略(跟应用相关)。调度器不能介入运行中业务,有可能减低资源使用效率(例如,“饥饿邻居”占据了IO带宽),因为调度器看不见他们。应用相关调度器更关注底层资源使用的不同情况,但是他们唯一选择资源的方法就是资源管理器提供的Offer/request接口,这个接口很容易变的很复杂。
共享状态架构
共享状态架构通过采用半分布式模式来解决这个问题,这种架构下集群状态多副本会被应用层次调度器独立更新,如图一C中所示。一旦本地有更新,调度器发布一个并发交易更新所有共享集群状态。有时候因为另外一个调度器发出了一个冲突交易,交易更新有可能失败。最重要的共享状态架构实例是Google的Omega系统,以及微软的Apollo和Hashicorp的Nomad容器调度。这些例子中,共享集群状态架构都是通过一个模块实现,也就是Omega中的“cell
state”,Apollo中的“resource monitor”,以及Nomad中的“plan
queue”。Apollo跟其他两个不同之处在于共享状态是只读的,调度交易直接提交到集群设备;设备自身会检查冲突,来决定接受或者拒绝更新,使得Apollo即使在共享状态暂时不可用情况下也可以继续执行。逻辑上来说,共享状态设计不一定必需将全状态分布在其它地方,这种方式(有点像Apollo)每个物理设备维护自己的状态,将更新发送到其它感兴趣的代理,例如调度器,设备健康监控,和资源监控系统。每个物理设备本地状态就成为一个全局共享状态的“沟通片”(shard)。然而,共享状态架构也有一些缺点,必须作用在稳定的(过时的,stale)信息(这点跟中心化调度器不同),有可能在高竞争情况下造成调度器性能下降(尽管对其它架构也有这种可能)。全分布式架构看起来这种架构更加去中心化:调度器之间没有任何协调,使用很多各自独立调度器响应不同负载,如图一d所示。每个调度器都作用于自己本地(部分或者经常过时的【stale】)集群状态信息。典型的,作业可以提交到任何调度器,调度器可以将作业发布到任何集群节点上执行。跟二级调度器不同的是,每个调度器并没有负责的分区,全局调度和资源分区是服从统计意义和随机分布的,这有点像共享状态架构,但是没有中央控制。尽管说去中心化底层概念(去中心化随机选择)是从1996年出现,现代意义上分布式调度应该是从Sparrow论文开始的,当时有一个讨论是:合适粒度(fine-grained)任务有很多优势,Sparrow论文的关键假设是集群上任务周期可以变得很短;接下来,作者假定大量任务意味着调度器必须支持很高通量的决策,而单一调度器并不能支持如此高的决策量(假定每秒上百万任务量),Sparrow将这些负载分散到许多调度器上。这个实现意义重大:去中心化理论上意味着更多的仲裁,但是这非常适合某类负载,我们会在后面的连载中讨论。现在,足够理由证明,由于分布式调度是无协调的,因此相对于复杂单体式调度,二级调度或者分布状态时调度,更适合于简单逻辑。例如:分布式调度是基于简单的“时间槽(slot)”概念,将每台设备分成n个标准时间槽,同时运行n个并发任务,尽管这种简化忽略了任务资源需求是各自不同的事实。在任务端(worker
side)使用服从简单服务规则的队列方式(例如Sparrow中FIFO),这样调度器的灵活性受到限制,调度器只需决定在哪台设备上将任务入队。因为没有中央控制,分布式调度器对于全局变量设置(例如,fairness
policies或者strict priority
precedence等)有一定难度。因为分布式调度是为基于最少知识做出快速决策而设计,因此无法支持或承担复杂应用相关调度策略,因此避免任务之间干扰,对于全分布式调度来说很困难。混合式架构混合式架构是为了解决全分布式架构缺陷,最近(发端于学院派)提出的解决方式,它综合了单体式或者共享状态的设计。这种方式,例如Tarcil,Mercury和Hawk,一般有两条调度路径:一条是为部分负载设计的分布式路径(例如,短时间任务或者低优先级批量负载),另外一条集中式调度,处理剩下负载,如图一e所示。对于所描述的负载来说,混合架构中发生作用的调度器都是唯一的。实际上,据我所知,目前还没有真正的混合架构部署于生产系统中。实际意义不同调度架构相对价值,除了有很多研究论文外,其讨论不仅仅局限在学院内,从行业角度对于Borg,Mesos和Omega论文的深入讨论,可以参见Andrew
Wang的专业博客。然而,很多以上讨论的系统都已经部署在大型企业生产系统中(例如,微软的Apollo,Google的Borg,Apple的Mesos),反过来这些系统激励了其它可用开源项目。如今,很多集群系统运行容器化负载,因此有一系列面向容器的“调度框架”(Orchestration
Framworks)出现,他们跟Google以及其它被称为“集群管理系统”类似。然而,很少关于这些调度框架和设计原则的讨论,更多是集中于面向用户调度的API(例如,这篇Armand
Grillet的报道,比较了Docker
Swarm,Mesos/Marathon和Kubernetes的默认调度器)。然而,很多客户既不懂不同调度架构的不同,也不知道哪个更适合自己的应用。图二展示了一部分开源编排框架的架构和调度器支持的功能。图表底部,也包括google和微软闭源系统作比较。资源粒度一列展示调度器分配任务给固定大小时间槽,还是按照多维需求(例如CPU,memory,磁盘IO,网络带宽等)分配资源。
图二:常用开源编排框架分类和功能比较,以及与闭源系统比较。决定一个合适调度架构主要因素在于你的集群是否运行一个异构(或者说混合的)负载。例如,前端服务(例如,负载均衡web服务和memcached)和批量数据分析(例如,MapReduce或者Spark)混合在一起,这种组合对于提高系统利用率是有意义的,但是不同应用需要不同调度方式。在混合设定下,单体式调度很可能导致次优任务分配,因为基于应用需求,单体调度逻辑不能多样化,而此时二级或者共享状态调度可能更加适合一些。许多面向用户服务负载运行的资源一般是满足容器的峰值需求,但是实际上资源都是过分配的。这种情况下,能够有机会降低给低优先级负载过分配资源对高效集群来说是关键。尽管Kubernetes拥有相对成熟方案,Mesos是目前唯一支持这种过分配策略的开源系统。这个功能未来应该有更大改善空间,因为根据Google
borg集群来看很多集群利用率任然小于60-70%。后续博客我们将就资源预估,过分配和有效设备利用等方面展开讨论。最后,特殊分析和OLAP应用(例如,Dremel或者SparkSQL)非常适合全分布式调度。然而,全分布式调度(例如Sparrow)内置相对严格功能设置,因此当负载是同构(也就是,所有任务同时运行)、配置时间(set-up
times)很短(也就是,任务调度后长时间运行,如同MapReduce应用任务运行于YARN)、任务通量(churn)很高(也就是,许多调度决定必须很短时间内做出)时非常合适。我们将在下一个博客中详细讨论这些条件,以及为什么全分布式调度(以及混合架构中分布模块)只对这种应用场景有效。现在,我们可以证明分布式调度比其他调度架构更加简单,而且不支持其他资源维度,过分配或者重新调度。总之,图二中表格表明,相对于更高级但是闭源的系统来说,开源框架仍然有很大提升空间。可以从如下几方面采取行动:功能缺失,使用率不佳,任务性能不可预测,邻居干扰(noisy
neighbours)降低效率,调度器精细调整以支持某些客户忒别需求。然而,也有很多好消息:尽管今天还有很多集群仍然使用单体式调度,但是也已经有很多开始迁移到更加灵活架构。Kubernetes今天已经可以支持可插入式调度器(kube-scheduler
pod可以被其它API兼容调度pod替代),更多调度器从1.2版本开始会支持“扩展器”提供客户化策略。Docker
Swarm,据我理解,在未来也会支持可插入式调度器。